地球科学进展 ›› 2009, Vol. 24 ›› Issue (5): 538 -548. doi: 10.11867/j.issn.1001-8166.2009.05.0538

研究论文 上一篇    下一篇

白令海冰间湖的数值模拟及影响模拟准确度的关键因素
付红丽,赵进平   
  1. 中国海洋大学极地海洋过程与全球海洋变化重点实验室,山东  青岛  266100
  • 收稿日期:2009-02-04 修回日期:2009-04-08 出版日期:2009-05-10
  • 通讯作者: 付红丽 E-mail:fuhongli@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“北极环极边界流的结构及其对气候变化贡献的研究”(编号:40631006);国家极地科学战略研究基金项目“北冰洋次表层暖水的变化及机制研究”(编号:20070207)资助.

A Modeling of Bering Sea Polynyas and Analysis of Key Factors Impacting Simulation Accuracy

Fu Hongli, Zhao Jinping   

  1. Ocean University of China,Key Laboratory of Polar Oceanography and Global Ocean Change,Qingdao  266100,China
  • Received:2009-02-04 Revised:2009-04-08 Online:2009-05-10 Published:2009-05-10

      冬季在北白令海陆架区域频繁地出现潜热冰间湖,对当地的生态系统和北极盐跃层贡献很大。将CICE海冰模式应用到该区域,采用高分辨率(6.37km)网格,模拟2002年11月至2003年4月的海冰变化过程,模拟的海冰总面积和海冰密集度与AMSR-E/Aqua卫星遥感结果吻合很好,其中两者日平均海冰总面积在模拟期间的相关系数达到0.97。模拟结果表明,东北风将海冰向南输运在东西走向的海岸南部形成冰间湖,反映了潜热冰间湖形成和演化的动力过程。对卫星观测数据,将海冰密集度<75%作为冰间湖的判据;而对数值模拟结果,确定海冰密集度<70%为冰间湖的判据。据此讨论白令海4个区域的冰间湖形成过程,与卫星数据进行比较,大部分冰间湖得到很好的模拟。深入讨论了影响冰间湖模拟准确度的主要因素,认为选用恰当的阈值、提高气象强迫场的空间和时间分辨率有助于提高模拟效果。对部分海域的冰间湖模拟效果不佳,需要发展冰海耦合模式才能最终解决。
     

     In winter, a lot of latent polynyas appear regularly in the shelf of Northern Bering Sea. They have made great contributions to local ecological system and the Arctic halocline. A Los Alamos Sea Ice Model (CICE) with a horizontal resolution of 6.37 km has been implemented to simulate a full year of sea-ice growth and decay starting on November 1, 2002 in the Bering Sea. The total sea ice area from the model results and one from AMSR-E/Aqua satellite observations has a good consistency. Their correlation coefficient of daily mean total sea ice area equals to 0.97 during the modeling period. Model results show that polynyas in southern domains of east-west coasts are formed by means of southward movements of sea ice, which are mainly forced by offshore northeast wind. So the CICE allows us to reproduce some key dynamic processes of latent polynyas opening and closing events during January-April 2003. For the satellite observation data, polynyas are defined as regions covered by <75% sea ice concentration and for model results we use <70% sea ice concentration as polynyas criterion. Accordingly formation processes of polynyas are discussed in four districts of the Bearing Sea. Comparing with satellite data, most polynyas are very well simulated. The article profoundly discusses key factors, which impact simulation accuracy of polynyas. It is concluded that selecting suitable threshold and increasing the spatial and temporal resolution of atmospheric forcing are very favorable to improving the simulation precision. We need to use a general ocean model coupled to the sea ice model to solve the problem of deviations of some polynyas.

中图分类号: 

[1] Smith S D , Muench R D, Pease C H. Polynyas and leads: An overview of physical processes and environment[J].Journal of Geophysical Research,1990, 95(C6): 9 461-9 479.
[2] Maqueda M A M, Willmott A J, Biggs N R T. Polynya dynamics: A review of observations and modeling[J]. Review of Geophysics, 2004, 42, RG1004, doi:10.1029/2002RG000116.
[3] Smedsrud L H, Budgell W P, Jenkins A D, et al. Fine-scale sea-ice modelling of the Storfjorden polynya, Svalbard[J].Annals of Glaciology,2006, 44: 1-7.
[4] Aagaard K, Coachman L K, Carmack E C. On the halocline of the Arctic Ocean[J].Deep-Sea Research,1981, 28: 529-545.
[5] Cavalieri D J, Martin S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean[J].Journal of Geophysical Research,1994, 99(C9): 18 343-18 362.
[6] Winsor P, Bjork G. Polynya activity in the Arctic Ocean from 1958 to 1997[J].Journal of Geophysical Research, 2000,105(C4): 8 789-8 803.
[7] Schauer U. The release of brine-enriched shelf water from Storfjord into the Norwegian sea[J].Journal of Geophysical Research,1995,100:16 015-16 028.
[8] Schauer U, Fahrbach E. A dense bottom water plume in the western Barents sea: Downstream modification and interannual variability[J].Deep Sea Research, 1999,46:2 095-2 108.
[9] McNutt L. Remote sensing analysis of ice growth and distribution in the eastern Bering sea[M]//Hood D W, Calder J A, eds. The eastern Bering sea shelf Oceanography and resources. Washington DC:Office of Marine Pollution, US National Oceanographic and Atmospheric Administration,1981,1:141-165.
[10] Niebauer H J, Bond N A, Yakunin L P, et al. An Update on the Climatology and Sea Ice of the Bering Sea[M]//Loughlin T R, K Ohtani, eds. Dynamics of the Bering Sea. Alaska, Fairbanks: University of Alaska Sea Grant, 1999: 33-34.
[11] Schumacher J D, Aagaard K, Pease C H, et al. Effects of a shelf polynya on flow and water properties in the northern Bering sea[J].Journal of Geophysical Research, 1983, 88(C5):2 723-2 732.
[12] Overland J E, Roach A T. Northward flow in the Bering and Chukchi seas[J].Journal of Geophysical Research, 1987, 92:7 097-7 105.
[13] Konyukhov, N.B. Wintering seabirds on Sirenikovskaya polynya (in Russian)[M]//Litvinenko,ed. Izuchenie morskikh kolonialnykh ptits v SSSR (Study of colonial seabirds in the USSR). N.M: Institute for Biological Problems of the North, Far East Branch, USSR Academy of Sciences, Magadan, 1990: 36-39.
[14] Fay F H , Cade T J. An ecological analysis of the avifauna of St. Lawrence Island, Alaska[J].University of California Publication in Zoology, 1959, 63(2):73-150.
[15] Lubin D, Massom R A. Polar Remote Sensing[M]. England: Atmosphere and Polar Oceans, Praxis/Springer, Chichester,2005:426.
[16] Stringer W J, Groves J E. Location and areal extent of polynyas in the Bering and Chukchi seas[J].Arctic, 1991, 44(suppl.1): 164-171.
[17] Markus T,Burns B A. A method to estimate subpixel-scale coastal polynyas with satellite passive microwave data[J].Journal of Geophysical Research,1995,100: 4 473-4 487.
[18] Barber D G , Massom R A. The role of sea ice in Arctic and Antarctic polynyas[M]//Smith W O Jr, Barber D G, eds. Polynyas: Windows to the World. Amsterdam: Elsevier, 2007, 74(1):42-43.
[19] Pease C H. The size of wind-driven coastal polynyas[J].Journal of Geophysical Research,1987, 92:7 049-7 059.
[20] Willmott A J, Holland D M, Maqueda M A M. Polynya Modelling[M]//Smith W O Jr, Barber D G, eds.Polynyas: Windows to the World. Amsterdam: Elsevier, 2007.
[21] Hunke E C, Lipscomb W H. CICE: The Los Alamos Sea Ice Model, Documentation and Software User′s Manual[R]. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Technical Report LA-CC-98-16 v.3.14, 2006. 
[22] Bitz C M , Lipscomb W H. An energy-conserving thermodynamic model of sea ice[J].Journal of Geophysical Research,1999, 104(15): 15 669-15 677.
[23] Hunke E C , Dukowicz J K. An Elastic-Viscous-Plastic model for sea ice dynamics[J].Journal of Physical Oceanography,1997, 27(9):1 849-1 867.
[24] Hunke E C , Dukowicz J K. The Elastic-Viscous-Plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere-incorporation of metric terms[J].Monthly Weather Review, 2002, 130(7): 1 848-1 865.
[25] Lipscomb W H, Hunke E C. Modeling sea ice transport using incremental remapping[J].Monthly Weather Review,2004, 132(6):1 341-1 355.
[26] Thorndike A S, Rothrock D A , Maykut G A , et al.The thickness distribution of sea ice[J].Journal of Geophysical Research, 1975,80(33): 4 501-4 513.
[27] Bitz C M, Holland M M, Weaver A J, et al. Simulating the ice-thickness distribution in a coupled climate model[J].Journal of Geophysical Research, 2001,106(C2): 2 441-2 463.
[28] Lipscomb W H. Remapping the thickness distribution in sea ice models[J].Journal of Geophysical Research, 2001, 106(C7): 13 989-14 000.
[29] Large W, Yeager S. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies[R].Technical Note: NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research,Boulder, Colo. 2004.
[30] World Meteorological Organization (WMO). WMO sea-ice nomenclature[R]. Geneva, World Meteorological Organization.(WMO-No. 259,TP.145 ed.)
[31] Lynch A H, Gluek M F, Chapman W L, et al.Walsh J. Satellite observation and climate system model simulation of the St. Lawrence Island Polynya[J].Tellus, 1997,49:277-297.
[32] Drucker R, Martin S, Moritz R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings[J].Journal of Geophysical Research, 2003, 108(C5): 3149. doi:10.1029/2001JC001213.
[33] Massom R A, Harris P T, Michael K J, et al. The distribution and formative processes of latent-heat polynyas in East Antarctica[Z]. Annals of  Glaciology,1998,27:420-426.

[1] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[2] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[3] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[4] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[5] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[6] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[7] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[8] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[9] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[10] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[11] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[12] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[13] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[14] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[15] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
阅读次数
全文


摘要