地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 313 -321. doi: 10.11867/j.issn.1001-8166.2007.03.0313

生态学研究 上一篇    下一篇

典型森林生态系统碳交换的机理模拟及其与观测的比较研究
顾峰雪 1,2,[曹明奎] 1,于贵瑞 1,陶 波 1,温学发 1,刘允芬 1,张雷明 1   
  1. 1.中国科学院地理科学与资源研究所生态系统研究网络综合研究中心,北京 100101;2. 中国科学院研究生院,北京 100039
  • 收稿日期:2006-10-16 修回日期:2007-01-29 出版日期:2007-03-10
  • 通讯作者: 顾峰雪(1974-),女,江苏徐州人,在读博士生,主要从事生态系统过程与全球变化研究.E-mail: gufx@igsnrr.ac.cn E-mail:gufx@igsnrr.ac.cn
  • 基金资助:

    中国科学院创新团队国际合作伙伴计划“人类活动与生态系统变化”(编号:CXTD-Z2005-1);国家自然科学基金重大项目“生态系统水碳氮循环过程对全球变化的响应与适应机制”(编号: 30590381);国家重点基础研究发展计划项目“中国陆地生态系统碳循环及其驱动机制研究”(编号:G2002CB412507)共同资助.

Modeling Carbon Exchange in Different Forest Ecosystems by CEVSA Model: Comparison with Eddy Covariance Measurements

GU Feng-xue 1, 2, [CAO Ming-kui] 1, YU Gui-rui 1, TAO Bo 1, WEN Xue-fa 1, LIU Yun-fen 1, ZHANG Lei-ming 1   

  1. 1.Synthesis Research Center of CERN, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China; 2. Graduate University of Chinese Academy of Sciences,Beijing 100039,China
  • Received:2006-10-16 Revised:2007-01-29 Online:2007-03-10 Published:2007-03-10

CEVSA模型是一个基于生理生态过程模拟植物—土壤—大气系统能量交换和水碳氮耦合循环及其对环境变化响应和适应的机理模型,在区域和全球尺度上得到广泛应用,但缺乏在生态系统尺度上的验证。本研究对CEVSA模型中碳循环关键过程的定量表达进行了重要改进:将模型的模拟时间步长由“旬”改为“日”;增加了物候参数化的子程序;调整了生物量的分配方案;基于碳平衡模拟叶面积指数的季节动态等。分别使用改进前后的CEVSA模型模拟了3类典型森林生态系统碳交换的季节动态,模拟的结果与通量观测进行了比较分析。结果表明,改进后的CEVSA模型能更好地模拟不同类型森林生态系统碳交换的季节动态,但在不同生态系统的不同时段,模型模拟的结果与通量观测相比还有一定的偏差,模型在碳交换关键过程对环境变化的响应和适应,尤其是针叶林光合作用对温度变化的响应和适应,以及生态系统对高温和水分亏缺的响应和适应等方面的模拟还需要进一步的改进和验证。

 The model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) is an ecosystem mechanical model to simulate energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. It has been widely used at the scales of regional and global; however, the description of water and carbon fluxes have not yet been evaluated and validated at ecosystem scale. The revised CEVSA model incorporates several significant improvements over the previous version of CEVSA. Using data from eddy covariance measurements in three different forest ecosystems, which represent the temperate mixed forest, temperate deciduous forest and sub-tropical coniferous forest, respectively, we tested and evaluated the previous and revised CEVSA model. The revised and previous model both can simulate the seasonal variation of carbon exchange in different forest ecosystem, and the revised model simulated much better the temporal variation and magnitude of carbon exchange than the previous model did. However, systematic errors in flux simulation were also identified for particular time of season in different ecosystems. The present study shows that the revised CEVSA model can simulate the seasonal pattern and magnitude of CO2 fluxes, but further improvement in calibrating the model simulation, especially in the responses and adaptability of photosynthesis and respiration to environment change, is required.

中图分类号: 

[1]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263: 185-190.
[2]IPCC. Climate Change 2001: The Scientific Basis [M]. Cambridge, New York: Cambridge University Press, 2001.
[3]Melillo J M, McGuire A D, Kicklighter D W, et al.Global climate change and terrestrial net primary production [J]. Nature, 1993, 363:234-240.
[4]Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model [J].Nature, 2000, 408: 184-187.
[5]Song C H, Woodcock C E. A regional forest ecosystem carbon budget model: Impacts of forest age structure and landuse history [J]. Ecological Modelling, 2003, 164: 33-47.
[6]Cao Mingkui, Yu Guirui, Liu Jiyuan, et al. Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle [J]. Science in China (Series D),2005, 48 (suppl.Ⅰ): 17-32.
[7]Lloyd J, Grace J, Miranda A C, et al. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties [J].Plant Cell and Environment,1995, 18: 1 129-1 145.
[8]Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future [J].Global Change Biology,2003, 9: 479-492.
[9]Yu Guirui, Zhang Leiming, Sun Xiaoming, et al. Advances in carbon flux observation and research in Asia[J].Science in China (Series D),2005, 48(suppl.Ⅰ):1-16.
[10]Baldocchi D, Falge E, Gu L H, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society,2001, 82: 2 415-2 434.
[11]Falge E, Baldocchi D, Tenhunen J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements [J]. Agricultural and Forest Meteorology,2002, 113: 53-74.
[12]Baldocchi D D, Wilson K B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales [J]. Ecological Modelling,2001, 142: 155-184.
[13]Running S W, Baldocchi D D, Turner D P, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data [J]. Remote Sensing of Environment,1999, 70: 108-127.
[14]Ito A, Saigusa N, Murayama S, et al. Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: Analysis of seasonal and interannual change [J]. Agricultureal and Forest Meteorology, 2005, 134: 122-134.
[15]Kramer K, Leinonen I, Bartelink H H, et al. Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six sites in Europe [J]. Global Change Biology, 2002, 8: 213-230.
[16]Kucharik C J, Barford C C, Maayar M E, et al. A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2and H2O vapor exchange [J]. Ecological Modelling,2005, 196: 1-31.
[17]Hanan N P, Berry J A, Verma S B, et al. Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems [J]. Agricultural and Forest Meteorology,2005, 131: 162-179.
[18]Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998,393: 249-252.
[19]Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change [J]. Global Change Biology,1998, 4: 185-198. 
[20]Cao M K, Zhang Q F, Shugart H H. Dynamic responses of African ecosystem carbon cycling to climate change [J]. Climate Research,2001,17: 183-193. 
[21]Cao M K, Prince S D. Increasing terrestrial carbon uptake from 1980's to the 1990's with changes in climate and atmospheric CO2 [J]. Global Biogeochemical cycles,2002, 16(4): 1-11.
[22]Cao M K, Tao B, Li K R, et al.Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981-1998 [J]. Acta Botanica Sinica, 2003, 45(5): 552-560.
[23]Ren Chuanyou, Yu Guirui, Wang Qiufeng, et al. Photosynthesis-transpiration coupling model at canopy scale in terrestrial ecosystem [J]. Science in China (Series D), 2005, 48 (suppl.Ⅰ): 160-171.
[24]Wen Xuefa. Measurements of Carbon Sequestration by Long-term eddy Covariance in a Mid-subtropical Pinus Plantation of Southeastern China[D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, CAS, 2005.[温学发.中亚热带红壤丘陵人工林生态系统CO2通量观测及其季节动态特征[D].北京:中国科学院地理科学与资源研究所,2005.]
[25]Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography [J]. Global Biogeochemical Cycles,1995, 9(4): 471-490.
[26]Gu Fengxue, Cao Mingkui, Wen Xuefa, et al. A comparison between simulated and measured CO2 and water flux in a sub-tropical coniferous forest [J]. Science in China (Series D),2006, 36 (suppl.Ⅱ): 241-251. 
[27]Arora V K, Boer G J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models[J].Global Change Biology, 2005, 11: 39-59.
[28]Law B E, Williams M, Anthoni P M, et al. Measuring and modeling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit [J].Global Change Biology,2000, 6: 613-630.
[29]Larcher W. Physiology Plant Ecology [M]. Berlin-Heidelberg: Springer-Verlag, 1980.
[30]Gordon W S. Climate Change, Hydrology, and Ecological Models: Intercomparison and Validation[D]. Austin: The Univeristy of Texas,2003.
[31]Dufrêne E, Davi H, Frangois C, et al. Modelling carbon and water cycles in a beech forest Part I: Model description and uncerntainty analysis on modeled NEE [J].Ecological Modelling,2005, 185: 407-436.
[32]Grant R F, Arain A, Arora V, et al. Intercomparison of techniques to model high temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests [J]. Ecological Modelling,2005, 188: 217-252.
[33]Hanson P J, Wullschleger S D, Norby R J, et al. Importance of changing CO2, temperature, precipitation and ozone on carbon and water cycles of an upland-oak forest: Incorporating experimental results into model simulations[J].Global Change Biology,2005,11:1 402-1 423.

[1] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[2] 程国栋, 赵传燕, 王瑶. 内陆河流域森林生态系统生态水文过程研究[J]. 地球科学进展, 2011, 26(11): 1125-1130.
[3] 曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展, 2000, 15(4): 446-452.
[4] 陈华,赵士洞. 全球气候变化对森林生态系统影响的研究(述评)[J]. 地球科学进展, 1993, 8(1): 1-7.
阅读次数
全文


摘要