地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 297 -304. doi: 10.11867/j.issn.1001-8166.2007.03.0297

综述与评述 上一篇    下一篇

14C样品贝叶斯法日历年龄校正研究进展
尹金辉,郑勇刚,刘粤霞,卢演俦   
  1. 中国地震局地质研究所,地震动力学国家重点实验室,北京 100029
  • 收稿日期:2006-05-21 修回日期:2007-01-15 出版日期:2007-03-10
  • 通讯作者: 尹金辉(1969-),男,湖北罗田人,副研究员,主要从事地质灾害事件与第四纪地质年代学研究.E-mail:yjhdzs@hotmail.com E-mail:yjhdzs@hotmail.com
  • 基金资助:

    国家自然科学基金项目“海原断裂带全新世古地震高精度测年和强震事件时间序列”(编号:40202015)资助.

Summarization on the Development of Calendrical Calibration by Bayesian Analysis on Series of Radiocarbon Dates

YIN Jin-hui, ZHENG Yong-gang, LIU Yue-xia, LU Yan-chou   

  1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
  • Received:2006-05-21 Revised:2007-01-15 Online:2007-03-10 Published:2007-03-10

系列14C样品贝叶斯法日历年龄校正研究已成为当前14C年代学中一个热点,系统综述了时序已知、时序间隔已知和时序间隔近似已知系列14C样品日历年龄校正研究的历史、原理、计算方法及其在树轮、泥炭、地层等领域上应用进展,对影响系列样品贝叶斯分析获得14C日历年龄区间的主要因素以及未来发展方向作了归纳。大量事例研究结果表明系列样品贝叶斯分析的实质在于贝叶斯方法从统计的角度灵活地把地层信息以概率方式加入到14C日历年龄校正过程中,获得比单个14C年代校正精度更高的日历年龄。

In the past several decades Bayesian statistical technique has been used to the analysis of radiocarbon calibration for high accuracy of dating results. This technique is expected to improve the imprecise calendar ages when 14C data are individually calibrated in the plateaux and wiggles of 14C calibration curve. Many successful cases have showed that Bayesian analysis could obtain more reliable chronology by incorporating stratigraphic information with radiocarbon ages. The historical progress, principle and calculation method aspects of Bayesian analysis were reviewed here for application in radiocarbon dating, and some archaeological and geological examples, such as sequences with known order, known age gaps and approximate gaps extracted from tree ring, peat and related deposits, were used to show its ability and reliability to reduce the uncertainties in radiocarbon dating. Finally, the effect factor and future developments of Bayesian analysis on serial chronology were also introduced.

中图分类号: 

[1]Stuiver M, Kra R S, eds. Calibration issue[J].Radiocarbon,1986, 28:805-1 030.
[2]McCormac F G, Baillie M G L. Radiocarbon to calendar date conversion: Calendrica calendrical bandwidths as a function of radiocarbon precision[J].Radiocarbon,1993, 35(2):311-316.
[3]Ferguson C W, Huber B, Suess H E. Determination of the age of Swiss lake dwellings[J]. Zeitschrift für Naturforschung,1966, 21:1 173-1 177.
[4]Clark R M, Renfrew C. A statistical approach to the calibration of floating tree-ring chronologies using Radiocarbon dates[J]. Archaeometry, 1972,14:5-19.
[5]Clark R M, Sowray A. Further statistical methods for the calibration of floating tree-ring chronologies[J]. Archaeometry,1973, 15:255-266.
[6]Clark R M, Morgan R A. An alternative statistical approach to the calibration of floating tree-ring chronologies: Two sequences from the Somerset Levels[J]. Archaeometry,1983, 25:3-16.
[7]Pearson G W, Pilcher J R, Baillie M G L, et al. High-precision 14C measurements of Irish oaks to show the natural 14C variations from AD 1840-5210 BC[J]. Radiocarbon, 1986, 28:911-934. 
[8]Stuiver M, Pearson G W. High-precision calibration of the radiocarbon time scale, AD 1950-500 BC[J]. Radiocarbon, 1986, 28:805-838. 
[9]Pearson G W, Stuiver M. High-precision calibration of the radiocarbon time scale, 500-2500 BC[J]. Radiocarbon,1986, 28:839-862.
[10]Pearson G W. Precise calendrical dating of known growth period samples using a “curve fitting” technique[J].Radiocarbon,1986, 28:292-299.
[11]Weninger B.High-precision Calibration of Archaeological Radiocarbon Dates[M].Acta Interdisciplinaria Archaeol IV. Nitra, 1986:11-53.
[12]Baillie M G L,Pitcher I R. Make a date with a tree[J]. New Scientist,1988, 117: 48-51. 
[13]Baillie M G L. Checking back on an assemblage of published radiocarbon dates[J]. Radiocarbon,1990, 32:361-366. 
[14]Clymo R S, Oldfield F, Appleby P G, et al. The record of atmospheric deposition on a rainwater-dependent peatland[J].Philosophical Transactions of the Royal Society of London,1990,327:331-338.
[15]Manning S W, Weninger B. A light in the dark: Archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age[J]. Antiquity,1992, 66:636-663.
[16]Buck C E, Litton C D, Kenworthy J B, et al. Combining archaeological and radiocarbon information: A Bayesian approach to calibration[J]. Antiquity,1991, 65:808-821. 
[17]Buck C E, Litton C D, Smith A F M. Calibration of radiocarbon results pertaining to related archaeological events[J]. Journal of Arcbaeological Science,1992, 19:497-512.
[18]Buck C E, Christen J A, Kenworthy J B, et al. Estimating the duration of archaeological activity using 14C determinations[J]. Oxford Journal of Archaeology,1994, 13:229-240. 
[19]Christen J A. Summarizing a set of radiocarbon determination: A robust approach[J]. Applied Statistics, 1994, 43:489-504.
[20]Christen J A, Litton C D. A Bayesian approach to wiggle matching[J]. Journal of Archaeological Science,1995, 22:719-725.
[21]Bronk Ramsey C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program[J]. Radiocarbon, 1995, 37(2):425-430.
[22]Ma Hongji, Guo Zhiyu. Calibration of a series of  14C dates in project of Xia-Shang-Zhou chronology[J]. Nuclear Techniques, 2000, 23(3):150-154.[马宏骥, 郭之虞. 夏商周断代工程中14C系列样品的树轮校正[J]. 核技术, 2000, 23(3):150-154.]
[23]Atwater B,Stuiver M, Yamaguchi D K. Radiocarbon test of earthquake magnitude at the Cascadia subduction zone[J]. Nature, 1991, 353:156-158.
[24]Friedrich M, Kromer B, Kaiser K F. High-resolution climate signals in the Bolling-Allerod Interstadial (Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records[J].Quaternary Science Reviews,2001, 20(11):1 223-1 232.
[25]Guo Zhiyu, Liu Kexin, Lu Xiangyang. The use of AMS radiocarbon dating for Xia-Shang-Zhou chronology[J].Nuclear Instruments and Methods in Physics Research B,2000, 172:724-731.
[26]Cai Lianzhen, Qiu Shihua. Calibration of a series of 14C dates by Bayesian statistics[J]. Archaeology,1999, 3:277-283. [蔡莲珍, 仇士华. 贝叶斯统计应用于碳十四系列样品年代的日历年龄校正 [J]. 考古, 1999, 3:277-283. ]
[27]Liu Ruoxin, Qiu Shihua, Cai Lianzhen, et al. The date of last large eruption of ChangBaishan Tianchi volcano and its significance[J]. Science in China(Series D), 1998, 41(1):69-74.[刘若新, 仇士华, 蔡莲珍, 等. 长白山天池火山最近一次大喷发年代研究及其意义[J].中国科学:D辑, 1997, 27(5):437-441.]
[28]Guo Zhiyu. AMS radiocarbon dating and its application[C]//Chen Wenji, eds. Age Determination of Young Geological Systems (continue). Beijing:Seismological Press, 1999.[郭之虞.加速器质谱14C测年及其应用[C]//陈文寄主编. 年轻地质体系的年代测定(续). 北京:地震出版社,1999.]
[29]Zhang Xuelian, Qiu Shihua. The study for radiocarbon dates of Yuntang and Qizhen building foundations within the Zhouyuan site[J]. Archaeology,2004, 4:78-84. [张雪莲, 仇士华. 周原遗址云塘、齐镇建筑基址14C年代研究[J]. 考古, 2004, 4:78-84.]
[30]Blaauw M, Gerard B M H , Dmitri M, et al. A numerical approach to 14C wiggle-match dating of organic deposits: Best fits and confidence intervals[J]. Quaternary Science Reviews, 2003, 22:1 485-1 500.
[31]Kilian M R, van Geel B, van der Plicht J. 14C AMS wiggle matching of raised bog deposits and models of peat accumulation[J].Quaternary Science Reviews,2000, 19:1 011-1 033.
[32]Bronk R C. Development of the radiocarbon program OxCal[J].Radiocarbon,2001, 43(2A):355-363.
[33]Van Geel B, Mook W G. High-resolution 14C dating of organic deposits using natural atmospheric 14C  variations[J]. Radiocarbon,1989, 31:151-156.
[34]Speranza A, van der Plicht J, van Geel B. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C  wiggle-matching[J].Quaternary Science Reviews,2000, 19:1 589-1 604.
[35]Blaauw M, Christen J A. Radiocarbon peat chronologies and environmental change[J]. Applied Statistics,2005, 54:805-816.
[36]Clymo R S, Oldfield F, Appleby P G, et al. The record of atmospheric deposition on a rainwater-dependent peatland [J].Philosophical Transactions of the Royal Society of London,1990,327:331-338.
[37]Kilian M R, van der Plicht J, van Geel B. Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change[J].Quaternary Science Reviews,1995,14:959-966.
[38]Kilian M R, van Geel B, van der Plicht J. 14C AMS wiggle matching of raised bog deposits and models of peat accumulation[J].Quaternary Science Reviews,2000, 19:1 011-1 033.
[39]Buck C E, Higham T F G, Lowe D J. Bayesian tools for tephrochronology[J].The Holocene,2003, 13:639-647.
[40]Christopher B R. Comment on “The bayesian statistics for 14C dates of chronologically Ordered samples: A critical analysis”[J].Radiocarbon,2000, 42:199-202. 
[41]Peter S, Werner R. The Bayesian statistics for 14C Dates of chronologically Ordered Samples: A critical analysis[J].Radiocarbon,2000, 42:183-198.
[42]Mauquoy D, Engelkes T, Groot M H M, et al. High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2002,186:275-310.
[43]Guo Zhiyu, Ma Hongji. How to consider and employ calibration method of a series of 14C dates[N].China Cultural Relics News,2002-06-21.[郭之虞, 马宏骥. 如何看待与使用系列样品14C年代校正方法[N].中国文物报, 2002-06-21.] 
[44]Nicholls G, Jones M. Radiocarbon dating with temporal order constraints[J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2001, 50(4):503-521.
[45]Rhodesa E J, Ramsey C B, Outramc Z. Bayesian methods applied to the interpretation of multiple OSL dates: High precision sediment ages from old Scatness Broch excavations, Shetland Isles[J]. Quaternary Science Reviews,2003, 22:1 231-1 244.

[1] 黄宝玲,高永军,穆治国. 单颗粒海绿石激光 40Ar- 39Ar定年的新突破[J]. 地球科学进展, 1998, 13(4): 407-408.
阅读次数
全文


摘要