地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 281 -289. doi: 10.11867/j.issn.1001-8166.2007.03.0281

综述与评述 上一篇    下一篇

锡在花岗质熔体和流体中的性质及分配行为研究进展
胡晓燕 1,2,毕献武 1,胡瑞忠 1,尚林波 1,樊文苓 1   
  1. 1.中国科学院地球化学研究所矿床地球化学重点实验室,贵州 贵阳 550002;2.中国科学院研究生院,北京 100039
  • 收稿日期:2006-06-27 修回日期:2007-01-11 出版日期:2007-03-10
  • 通讯作者: 胡晓燕(1974-),女,贵州平坝人,博士生,从事实验地球化学、矿床地球化学研究.E-mail: huxiaoy@mails.gucas.ac.cn E-mail:huxiaoy@mails.gucas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“中国南方大陆岩石拉张与成矿作用”(编号:KZCX3-SW-125);国家自然科学基金项目“富碱侵入岩的Au、Cu、Sn成矿专属性研究”(编号:40373020);中国科学院“西部之光”项目“富碱侵入岩与铜、金、锡成矿关系研究”共同资助.

Advances in Tin Distribution between Granitic Melts and Coexisting Aqueous Fluids and a Review of Tin in Fluids and Melts

HU Xiao-yan 1,2,BI Xian-wu 1,HU Rui-zhong 1,SHANG Lin-bo 1, FAN Wen-ling 1   

  1. 1.Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550002, China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2006-06-27 Revised:2007-01-11 Online:2007-03-10 Published:2007-03-10

元素在流/熔体间的交换、分配过程是岩浆热液矿床形成的重要环节,作为与岩浆活动有密切成因联系的典型矿种之一,锡在花岗质熔体和流体中的存在形式、分配行为及其影响因素是认识其成矿机理的关键。锡在花岗质熔体和流体中的分配特征不仅受温度、压力、氧逸度等条件的制约,流体组成和熔体的NBO/T(非桥氧键/桥氧键)、碱含量、AlK/Al(总碱与铝含量比)也是制约锡分配行为的重要因素;挥发分F、Cl对锡在流体、熔体中的地球化学行为影响尤为明显。

The distribution of elements between melts and coexisting aqueous fluids plays an important role in magmatic hydrothermal oreforming process. Tin ore is one of the representatives related to granitic magma evolvements. Cognition of tin species in granitic silicate melts, fluids and the partition coefficients is a key to recognition of the mechanism of tin ore-forming. The distribution of tin between granitic silicate melts and fluids is not only influenced by temperature, pressure, oxygen fugacity, but also controlled by NBO/T、Alkali and Alkali/Aluminium of melts and the content of fluids. Tin geochemical characteristics in melts and fluids are influnced significantly by different contents of volatiles fluorine and chlorine. 

中图分类号: 

[1]Xia Hongyuan, Liang Shuyi. The Genesis of Granitic Tin-Tungsten Rare Metal Ore Deposits in the South-east of China[M].Beijing: Science Press,1991.[夏宏远,梁书艺.华南钨锡稀有金属花岗岩矿床成因系列[M].北京:科学出版社,1991.]
[2]Audetat A, Gunther D, Heinrich C A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite(Australia)[J].Geochimica et Cosmochimica Acta,2000, 64(19):3 373-3 793.
[3]Eugster H P,Wilson G A. Transport and deposition of ore-forming elements in hydrothermal systems associated with granites[C]//Halls C, ed. High Heat Production Granite, Hydrothermal Circulation and Ore Genesi.1985:87-98.
[4]Bai T B, Koster A F, Gross V. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids [J]. Geochimics et Cosmochimica Acta, 1998, 63:1 117-1 131.
[5]Webster J D, De Vivo B. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius[J]. Ameriean Mineralogist,2002, 87:1 046-1 061.
[6]Thomas R, Förster H J, Heinrich W. The behaviour of boron in aperaluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study[J]. Contributions to Mineralogy and Petrology,2003,144: 457-472.
[7] Wang Yurong, Haselton T, Aruscavage P,et al. Experimental research on the partitioning coefficients of tin between fluids and granitic melts[C]//Annual Report Institute of Geochemistry Academia Sinica. Guiyang:Guizhou People's Press,1986:180-181.[王玉荣,Haselton T, Aruscavage P,等.锡在花岗岩熔体相及水热流体相中的分配实验研究[C]//中国科学院地球化学研究所年报.贵阳:贵州人民出版社,1986:180-181.]
[8] Keppler H,Wyllie P J. Partitioning of Cu ,Sn ,Mo ,U ,and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J]. Contributions to Mineralogy and Petrology,1991,109:149-160.
[9]Chen Zilong, Peng Shenglin. The experimental results of W and Sn Partitioning between fluid and melts and their significance for the origin of W and Sn ore deposits[J]. Geological Review,1994 ,40 (3): 274-282.[陈子龙,彭省临.钨、锡流—熔分配实验结果及其矿床成因意义[J].地质论评,1994,40(3):274-282.]
[10]Peng Shenglin, Chen Zilong, Chen Xu, et al. New evidence for the liquation mineralization of W and Sn[J].Journal of Central South University Technology,1995,26(2):153-156.[彭省临,陈子龙,陈旭,等.钨、锡液态分离成矿作用的新证据 [J].中南工业大学学报,1995,26(2):153-156.]
[11]Kohn S C, Schofield P F, The implication of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsterite and silicate melts[J].Chemical Geology,1994,117: 73-87.
[12]Kushiro I, Mysen B O. A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt[J].Geochimica et Cosmochimica Acta,2002, 66(12): 2 267-2 272.
[13]Murthy V R, van Westrenen W, Fei Y. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature,2003, 423: 163-165.
[14]Lowenstern J B, Mahood G A, Hervig R L, et al. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantellera, Italy[J].Contribution to Mineralogy and Petrology,1993, 114:119-129.
[15]Tang Qunli. Experimental research on the partitioning cofficients of copper between silicate melts and liquid coexisting[D]. Institute of Geochemistry, Chinese Academy of Sciences,2003.[唐群力.硅酸盐熔体-流体共存体系中的Cu分配系数的实验研究[D].中国科学院地球化学研究所,2003.]
[16]Urabe T. Aluminous granite as a source Magma of hydrothermal ore deposits: An experimental study[J].Economic Geology,1985,80:148-157.
[17]Barnes H L. Geochemistry of Hydrothermal Ore Deposits (3 rd)[M]. New York: John Wiley and Sons, 1997:435-469.
[18]Barsukov V L, Volosov A G, Ryzhenko B N, et al. Calculated equilibria in the Sn-Cl-F-O-H-Na system and the thermodynamic parameters of tin compounds[J].Geochimiea et Cosmochimica Acta,1991,55:1-11.
[19]Volosov A V, Ryzhenko B N, Sushchevskaya T M, et al. Simulation of redox-Potential and rock-water ratio effects on Sn-bearing systems at 300 ℃[J].Geochimica et Cosmochimica Acta,1991,55:124-130.
[20]Liu Yushan, Chen Shuqing. Experimental research of tin solubility and transformation[J].Acta Geologica Sinica,1986,59(1):78-87 .[刘玉山,陈淑卿.锡石溶解度和锡迁移形式的实验研究[J].地质学报,1986,59(1):78-87.]
[21]Fan Wenling, Chen Zixin, Wang Shengyuan, et al. Experimental Calibration of Sn-SiO2 complexation in Hydrothermal Solutions[J].Bulletin of Mineralogy, Petrology and Geochemistry,1997,16(3):159-162.[樊文苓,陈紫新,王声远,等.热液中二氧化硅与成矿元素锡络合作用的实验标定[J].矿物岩石地球化学通报,1997,16(3):159-162.]
[22]Chen Jun, et al. Geochemistry of Tin[M]. Nanjing:Nanjing University Press,2000:116-154. [陈骏,等.锡的地球化学[M].南京:南京大学出版社,2000:116-154.]
[23]Seby F, Potin-Gautier M, Giffaut E, et al. A critical review of thermodynamic data for inorganic tin species[J].Geochimica et Cosmochimica Acta,2001,65(18): 3 041-3 053.
[24]Eugster H P. Minerals in hot water[J]. American Mineralogist,1986, 71: 655-673.
[25]Helgeson H C,Kirkham D H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressure and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent[J]. American Journal of Science,1974, 274:1 089-1 198.
[26]Helgeson H C. Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures[J].Physics and Chemistry of the Earth,1981,13/14:133-177.
[27]Chen Jun. Experiment on solubility of cassiterite in the presence of charcoal[J].Geology Review,1986,32(3):287-294.[陈骏.碳存在条件下锡石的溶解度实验[J].地质评论,1986,32(3):287-294.]
[28]Li Tongjin. Experimantal studies of the solubility of cassiterite and the extraction of tin from granitic melts[J].Chinese Journal of Geochemistry,1989, 8(1):84-96.
[29]Art A, Migdisov  A E, Williams-Jones. An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350℃. Implications for tin ore formation[J].Chemical Geology,2005, 217:29-40.
[30]Kenneth J, Jackson, Harold C, et al. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I.Calculation of the solubility of cassiterite at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta,1985,49(1):1-22.
[31]Brsukove V L, Durasova N A, Kovalenko N I, et al. Oxygen fugacity and tin behavior in metals and fluids. [J].Geology,1987,38:723-733.
[32]Kovalenko N I, Ryzhenko B N, Dorofeyeva V A,et al. The stability of Sn(OH)2-4, Sn(OH)2F- and Sn(OH)2Cl- at 500℃ and 1 kbar[J]. Geochemistry International,1992, 29: 84-94.
[33]Sherman D M, Ragnarsdotir K V, Oelkers E H,et al.Speciation of tin (Sn2+ and Sn4+) in aqueous Cl solutions from 25℃ to 350℃: An in situ EXAFS study[J].Chemical Geology,2000, 167:169-176.
[34]Wilson G A, Eugster H P. Cassiterite solubility and tin speciation in supercritical chloride solutions[C]//Spencer R J, Chou Ming, eds. Fluid-mineral Interactions. Geochemistry Society of Special Publishing,1990,2:179-195.
[35]Müller B, Seward T M. Spectrophotometric determination of the stability of tin (II) chloride complexes in aqueous solution up to 300℃[J].Geochimica et Cosmochimica Acta,2001,65(22):4 187-4 199.
[36]Taylor J R, Wall V J. Cassiterite solubility, Tin speciation, and transport in a magmatic aqueous phase[J].Economic Geology,1993,88:437-460.
[37]Heinrich C A. The chemistry of hydrothermal tin (tungsten) ore deposition[J].Economic Geology,1990;85:457-481.
[38]Zhang Dehui. Overview of research on the ore depositonal mechanisms in ore-forming fluid[J].Geological Science and Technology Information,1997,16(3):53-58.[张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997,16(3):53-58.]
[39]Halter W E, Williams  J A E, Kontak D J. Origin and evolution of the greisenizing fluid at the east Kepmptiville tin deposit, Nova Scotia, Canada[J].Economic Geology,1995,93:1 026-1 051.
[40]Taylor J R, Wall V J. The behavior of tin in granitoid Magmas[J].Economic Geology,1992, 87: 403-420 .
[41]Linnen R L, Pichavant M, Holtz F. The combined effects of fo2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2kbar[J].Geochimica et Cosmochimica  Acta,1995,60:4 965-4 976.
[42]Linnen R L, Pichavant M,Holts F. The conbined effect of fo2 and melt composition on SnO2 solubility and tin diffusion in haplogranitic melts[J].Geochimica et Cosmochimica Acta,1996,60(24):4 965-4 976.
[43]Bhalla P, Holtz F, Linnen R L.Behrens H. Solubility of cassiterite in evolved granitic melts: Effect of T,  fo2, and additional volatiles[J].Lithos,2004,80:387-400.
[44]Li Fuchun, Zhu Jinchu, Rao Bing, et al. SnO2 concentration in granitic melt and its relation with crystallization temperature and time duration[J].Mineral Deposits,2002,21(4):393-398.[李福春,朱金初,饶冰,等.花岗质熔体中SnO2含量与结晶温度和时间的关系[J].矿床地质,2002,21(4):393-398.]
[45]Zhang Bangdong. Physical Chemic of Granite Related to Uranium ore Forming[M]. Beijing: Atomic Energy Press,1992:9-18.[章邦桐著.花岗岩物理化学及铀成矿作用[M].北京:原子能出版社,1992:9-18.]
[46]Taylor J R,Wall V J. The mobilization of tin from granitoid magmas[C]. 27th International Geology Congress,1984 ,IV.V(Section9).
[47]Štemprok M. Solubility of tin, tungsten and molybdenum oxides in felsic magmas[J].Mineralium Deposita,1990,25(3):205-212.
[48]Yuan Wanming. Improvement of calculation method of NBO/T value for magmatic melts[J].Acta Petrologica Sinica,1990,(3):71-77.[袁万明.岩浆熔体NBO/T值计算法的改进[J].岩石学报,1990,(3):71-77.]
[49]Yuan Wanming. The relation between the melt structure of silicate and some geologic characteristics[J].Acta Petrologica Sinica,1994,10(3):301-310.[袁万明.硅酸盐熔体结构与某些地质特征的关系[J].岩石学报,1994,10(3):301-310.]
[50]Jin Zhisheng, Huang Zhilong, Zhu Chengming. Silicate melt texture and liquid immiscibility[J].Geology-Geochemistry,1997,(1):60-64.[金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用[J].地质地球化学,1997,(1):60-64.]
[51]Jiang Guochang, You Jinglin, Wu Yongquan, et al. A discussion on the micro-structural of silicate melt[J].Geology-Geochemistry,2003,31(4):80-86.[蒋国昌,尤静林,吴永全,等.硅酸盐熔体微结构单元的探讨[J].地质地球化学,2003,31(4):80-86.]
[52]Wang Yongqiang, Zhang Zhaochong, Xu Peicang, et al. Advance in the structure studies on silicate melts[J].Advances in Earth Science,1999,14(2):168-173.[王永强,张招崇,徐培苍,等.硅酸盐熔体结构的研究进展和问题[J].地球科学进展,1999,14(2):168-173.]
[53]Mysen B O, Virgo D, Seifert F A. Relationships between properties and structure of aluminosilicate melts[J].American Mineralogist,1985,70:85-105.
[54]Baker D R, Vaillancourt J. The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport[J].Earth and Planetary Science Letters,1995, 132: 199-211.
[55]Naski G C,Hess P C. SnO2 solubility: Experimental results in peralumious and peralkaline high silica glasses[J]. EOS,1985,66:412.
[56]Institue of Geochemistry, Chinese Academy of Science. Advanced Geochemistry[M].Beijing: Science Press,2000:159-170. [中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,2000:159-170.]
[57]Chantal P, Chinh N, Michel C. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the Uranium oxide-Hapligranite-H2O-NaX(X=Cl,F) system at 770℃, 2kbar[J].Geochimics et Cosmochimica Acta,1996,60:1 515-1 529.
[58]Keppler H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J].Contribution to Mineralogy and Petrology,1993,114:479-488.
[59]Webster J D. Exsolution of magmatic volatile phases from Cl-enriched Mineralizing granitic magmas and implications for ore metal transport[J].Geochimica et Cosmochimica Acta,1997,61(5):1 017-1 029.
[60]Webster J D, De Vivo B. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius[J].American Mineralogist,2002,87:1 046-1 061.
[61]Abiochemistry Staff Room of Dalian University of Technology. Abiochemistry[M].Beijing: High Education Press,1994.[大连理工大学无机化学教研室编.无机化学[M].北京:高等教育出版社,1994.]
[62]Behrens H, Meyer M, Holtz F, et al. The effect of alkali ionic radius, temperature, and pressure on the solubility of water in MAlSi3O8 melt(M=Li,Na,K,Rb)[J]. Chemical Geology,2001, 174: 275-289.
[63]Webster J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effect of melt composition at 2 kbar and 800℃[J].Geochimica et Cosmochimica Acta,1992,56:679-687.
[64]Malinin S D, Kravchuk I F,  Delbove F. Chloride distribution between phases in hydrated and dry chloride-aluminosilicate metl systems as a function of phase composition[J].Geochimistry International,1989, 26:32-38.
[65]Webster J D. Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta,1992, 56:659-678.
[66]Schaller T, Dingwell D B, Keppler H,et al. Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study[J].Geochimica et Cosmochimica Acta,1992,56:701-707.
[67]Xiong Xiaolin, Zhao Zhenhua, Zhu Jinchu, et al. Experiments on the fluid/melt partition of fluorine in the system albite granite-H2O-HF[J].Geochimica,1998,27(1):67-73.[熊小林,赵振华,朱金初,等.钠长花岗岩-H2O-HF体系中流体/熔体间氟的分配系数研究[J].地球化学,1998,27(1):67-73.]
[68]Webster J D. Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt[J].Contribution to Mineralogy and Petrology,1990,104:424-438.
[69]Webster J, Thomas R, Förster H J, et al. Geochemical  evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany[J].Mineralium Deposita,2004,39:452-472.
[70]Webster J D, Holloway J R. Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids: New implications for granitic differentiation and ore deposition[J].Geochimica et Cosmochimica Acta,1988,52:2 091-2 105.
[71]Bettencourt J S, Leite Jr W B, Goraieb C L, et al. Sn-polymetallic greisen-type deposits associated with late  stage rapakivi granites, Brazil: Fluid inclusion and stable isotope characteristics[J].Lithos,2005, 80: 363-386.
[72]Bi Chengsi, Shen Xiangyuan, Xu Qingsheng, et al.Geological characteristics of stanniferous Granites in the Beilekuduk tin metallogenic belt Xinjiang[J].Acta Petrologica et Mineralogica,1993, 12(3):213-223.[毕承思, 沈湘元, 徐庆生, 等.新疆贝勒库都克锡矿带含锡花岗岩地质特征[J].岩石矿物学杂志.1993, 12(3):213-223.]
[73]Liu Jiayuan, Yu Hengxiang, Wu Guoquan. Alkali granites and tin deposits of the Kalamaili Area, northern Xinjiang[J]. Geological Exploration for Non-ferrous Metals,1997, 6(3):129-135.[刘家远, 喻亨祥, 吴郭泉. 新疆北部卡拉麦里富碱花岗岩带的碱性花岗与锡矿[J]. 有色金属矿产与勘查,1997, 6(3):129-135.]
[74]Chen Fuwen, Li Huaqin, Cai Hong, et al. Chronology and origin of the Ganliangzi tin orefield Xinjiang[J].Mineral Deposits,1999, 8(1):91-97.[陈富文, 李华芹, 蔡红,等.新疆干梁子锡矿田成岩成矿作用同位素年代学研究及矿床成因探讨[J]. 矿床地质,1999,18(1):91-97.]
[75]Zhao Zhenhua,Bao Zhiwei,Zhang Boyou.Geochemistry of the Mesozoic basaltic roc ks in so uthern Hunan province[J].Science in China(Series D),1998, 41(suppl.):102- 112.[赵振华, 包志伟, 张伯友. 湘南中生代玄武岩类地球化学特征[J].中国科学:D辑, 1998, 28(增刊):7-14.]
[76]Zhao Zhenhua, Bao Zhiwei, Zhang Boyou, et al. Crust-mantle interaction and its contribution to the Shizhuyuan tungsten-polymeta~c mineralization[J].Science in China(Series D),2000, 30(suppl.):161-168.[赵振华, 包志伟, 张伯友,等.柿竹园超大型钨多金属矿床的壳幔相互作用背景[J]. 中国科学:D辑, 2000, 30(增刊):161-168.]
[77]Wang Denghong, Chen Yuchuan, Li Huaqin, et al. Geological and geochemical features of the Furong tin depo sits in Hunan and their significanceformineral prospecting[J]. Bulletin of Geology,2003,22(1):50-56.[王登红, 陈毓川, 李华芹, 等.湖南芙蓉锡矿的地质地球化学特征及找矿意义[J]. 地质通报, 2003,22(1):50-56.]
[78]Li Zhaoli.Geochemical relationship between tin mineralization and A-type granite: A case of the Furong tin orefield, Hunan province, South China[D].Guiyang: Chinese Academy of Sciences and for Diploma of the Institute of Geochemisty,2006.[李兆丽.锡成矿与A型花岗岩关系的地球化学研究—以湖南芙蓉锡矿田为例.中国科学院研究生院博士论文[D].贵阳:中国科学院地球化学研究所,2006.]
[79]Zheng Jijian, Jia Baohua. Geological characteristics and related tin-polymetallic mineralization of the qitianling granite complex in southern Hunan Province[J]. Geology and Mineral Resources of South China,2001, (4):50-57.[郑基俭, 贾宝华. 骑田岭岩体的基本特征及其与锡多金属成矿作用关系[J]. 华南地质与矿产, 2001, (4):50-57.]
[80]Tu Guangzhi. Alkalirich intrusive rocks[J].Mineral Resources and Geology,1989,13(3):1-4.[涂光炽. 关于富碱侵入岩[J]. 矿产与地质,1989,13(3):1-4.]
[81]Zeng Yonghong, Wang Tingjiang, Zheng Shigan, et al. Characteristics of mineralization of chuanling jiao tin deposit in Hunan and disccusion on genesis of the deposit[J].Geology and Mineral Resources of South China,2006,(2):13-17.[曾永红,王廷江,郑时干,等. 湖南船岭脚锡矿区矿化特征及成因探讨[J].华南地质与矿产,2006,(2):13-17.]
[82]Zhang Yuquan,Xie Yingwen,Chen Zhongli.Rb-Sr isochron age for tin-bearing granites in the Sanjiang region[J].Acta Petrologica Sinica,1990,(1):75-81.[张玉泉,谢应雯,成忠礼.三江地区含锡花岗岩Rb-Sr等时线年龄[J].岩石学报,1990,(1):75-81.]

[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[3] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[4] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[5] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[6] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[7] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[8] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[9] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[10] 刘显凡,赵甫峰,李春晖,楚亚婷,邓碧平,宋祥峰,张民. 深部过程中地幔流体现实微观踪迹的实验证据[J]. 地球科学进展, 2012, 27(10): 1161-1166.
[11] 傅晓明,戴塔根,息朝庄,刘 伟,刘 旭. 青海双朋西金铜矿床的成矿流体特征及流体来源[J]. 地球科学进展, 2009, 24(5): 531-537.
[12] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[13] 赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状[J]. 地球科学进展, 2009, 24(10): 1130-1137.
[14] 黄思静,Hairuo QING,胡作维,王春梅,郜晓勇,邹明亮,王庆东. 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
[15] 刘长华,殷学博. 关于现代浅海型海底热液活动的研究进展[J]. 地球科学进展, 2006, 21(9): 918-924.
阅读次数
全文


摘要