地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 234 -240. doi: 10.11867/j.issn.1001-8166.2007.03.0234

研究论文 上一篇    下一篇

深圳断裂带构造活动性分析
孙 杰 1,3,贾建业 1,詹文欢 1,易顺民 4   
  1. 1.中国科学院南海海洋研究所,广东 广州 510301; 2.中国科学院广州分院,广东 广州 510070;3.中国科学院研究生院,北京 100049; 4.深圳地质局,深圳 518000
  • 收稿日期:2006-10-23 修回日期:2007-01-19 出版日期:2007-03-10
  • 通讯作者: 孙杰(1978-),男,山东烟台人,博士研究生,主要从事地质灾害与地质环境研究.E-mail: sunjie0930@126.com E-mail:sunjie0930@126.com

A Study of the Tectonic Activity of Shenzhen Fracture Zone

SUN Jie 1,3, JIA Jian-ye 2, ZHAN Wen-huan 1, YI Shun-min 4   

  1. 1.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China;2.Guangzhou Branch, Chinese Academy of Sciences, Guangzhou 510070,China;3. Graduate University of  Chinese Academy of Sciences, Beijing 100049,China;4.Shenzhen Geological Bureau,Shenzhen 518000,China
  • Received:2006-10-23 Revised:2007-01-19 Online:2007-03-10 Published:2007-03-10

深圳断裂带的活动性关系到深圳发展的前景,从构造地质学、遥感图像、地震学、地貌学和地球动力学的角度出发,论述了深圳及其邻近地区的地质构造背景,阐述了深圳断裂带的构造活动性。通过对断裂带地层剖面和断层物质研究发现,断裂带晚更新世以来没有明显活动迹象;地震活动方面,断裂带所在区域地震活动以微震为主,且震源分布与断裂带产状一致,反映断裂具有一定的活动性;根据地应力监测资料,最大主应力量值小且应力方向北西向,与断裂近乎垂直,不利于断裂活动。综合各方面因素,认为深圳断裂带晚更新世至今活动已经明显减弱;现代微震活动是其构造能量缓慢释放的表现,现今深圳断裂带构造稳定,不会发生较大规模的活动。

 From the structural geology, Remote Sensing Images,seismology,geomorphology and geodynamics, this paper introduces the geological structure background of Shenzhen and its adjacent, the tectonic movement of Shenzhen fracture zone is discussed. We believe that the Shenzhen fracture zone had no perceptible activities since late Pleistocene by fault profiles and fault material; micro earthquakes occurred frequently along this fault segment and foci of quite a few minor shocks detected were located to fall at different depths well within the fault zone, This means the fault is in a stage of action. Based on the actually measured nature stress data of Shenzhen, we find the value of maximum principal stress is small and direction of it is NW, vertical direction of fault. Such a stress state is too low to trigger sudden movement of the fault. The conclusion we reached is Shenzhen fracture zone is in a relative stable state now, modern microearthquakes are the representation of it releasing its tectonic energy slowly, and no sudden large movement of the fault would be expected.

中图分类号: 

[1]Study Group. An Assessment of the Crustal Stability of Shenzhen Municipality[M]. Beijing: Geological Publishing House, 1991.[地质矿产部《深圳市区域稳定性评价》编写组.深圳市区域地壳稳定性评价[M] .北京: 地质出版社, 1991.]
[2]Huang Zhenguo, Li Pingri, Zhang Zhongying, et al. The Landform of Shenzhen[M]. Guangzhou: Guangdong Science and Technology Press,1983:132-138.[黄镇国,李平日,张仲英,等.深圳地貌[M] 广州:广东科技出版杜,1983:132-138.]
[3]Lu Yanchou, Sun Jianzhong. An investigation on geomorphology and quaternary deposition for activity of the Shenzhen fault zone, Guangdong province[J]. Seismology and Geology,1991,13(2):138-145.[卢演俦,孙建中.广东深圳断裂带活动性的第四纪地质和地貌研究[J].地震地质,1991,13(2):138-145.]
[4]Zhang Hu'nan, Cheng Weiguang, Huang Kunrong, et al.New Tectonic Activity and Geological Environment of Coastal Areas in South China[M]. Beijing: Seismological Press,1990:216-222.[张虎男,陈伟光,黄坤荣,等.华南沿海新构造运动与地质环境[M].北京:地震出版社,1990:216-222.]
[5]Chen Weiguang, Zhao Hongmei, Li Fuguang,et al. Fault activity and their influence upon geologic environment in Shenzhen city[J].Tropical Geography,2001, 21(1): 45-50.[陈伟光,赵红梅,李富光,等.深圳市断裂构造的活动性及其对地质环境的影响[J]. 热带地理,2001, 21(1): 45-50.]
[6]Seismotectonic Division, Seismological Society of China, eds. Researches on Active Faults[M]. Beijing: Seismological Press, 1982.[中国地震学会地震地质专业委员会.中国活动断裂[M].北京: 地震出版社, 1982.]
[7]Shenzhen Geology Bureau, Guangdong Province. Comprehensive Geological Investigation Report of Shenzhen Fault Zone[R]. Shenzhen Geology Bureau,2003.[广东省深圳市地质局,深圳断裂带综合地质调查报告[R].深圳地质局,2003.]
[8]Wei Bolin.Seismotectonic Conspectus of Guangdong Province[M]. Beijing: Seismological Press, 2000.[魏柏林.广东省地震构造概论[M].北京:地震出版社,2000.]
[9]Li Xingtang,Xu Bing, Huang Dingcheng, et al. Study and Method on Regional Stability[M]. Beijing: Geological Publishing House, 1987.[李兴唐,许兵,黄鼎成,等.区域地壳稳定性研究理论与方法[M].北京:地质出版社,1987.]

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[3] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[4] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[5] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[6] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[7] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[8] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[9] 尹帅, 丁文龙, 杨文娜, 赵威, 张敏, 丛森. 考虑地层各向异性井壁稳定性研究进展[J]. 地球科学进展, 2015, 30(11): 1218-1230.
[10] 范留明, 耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展, 2015, 30(11): 1268-1277.
[11] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[12] 万修全, 刘泽栋, 沈飙, 林霄沛, 吴德星. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482-491.
[13] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[14] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[15] 刘首华,牟林,刘克修,王兴,李欢,高佳. 畸形波研究的进展及存在问题[J]. 地球科学进展, 2013, 28(6): 665-673.
阅读次数
全文


摘要