地球科学进展 ›› 2017, Vol. 32 ›› Issue (9): 959 -971. doi: 10.11867/j.issn.1001-8166.2017.09.0959

上一篇    下一篇

海洋环境中的氨基糖及其在有机质循环过程中的指示作用
任成喆( ), 袁华茂 *( ), 宋金明, 李学刚, 李宁, 段丽琴   
  1. 1.中国科学院海洋研究所海洋生态与环境科学重点实验室,山东 青岛 266071
    2.中国科学院大学, 北京 100049
    3.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室,山东 青岛 266237
  • 收稿日期:2017-03-03 修回日期:2017-07-17 出版日期:2017-09-20
  • 通讯作者: 袁华茂 E-mail:renchengzhe@outlook.com;yuanhuamao@qdio.ac.cn
  • 基金资助:
    国家自然科学基金委员会—山东省联合基金项目“海洋生态环境变化的生物地球化学机制”(编号:U1406403);国家重点基础研究发展计划项目“海湾营养物质迁移转化规律及其环境效应”(编号:2015CB452902)资助

Amino Sugars and Their Indicating Role in the Cycling of Organic Matter in Marine Environment

Chengzhe Ren( ), Huamao Yuan *( ), Jinming Song, Xuegang Li, Ning Li, Liqin Duan   

  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
  • Received:2017-03-03 Revised:2017-07-17 Online:2017-09-20 Published:2017-09-20
  • Contact: Huamao Yuan E-mail:renchengzhe@outlook.com;yuanhuamao@qdio.ac.cn
  • About author:

    First author:Ren Chengzhe (1991-), male, Baicheng County, Jilin Province, Ph.D studernt. Research areas include marine biogeochemistry.E-mail:renchengzhe@outlook.com

  • Supported by:
    *Project supported by the National Natural Science Foundation of China and Shandong Province Joint Fund “Biogeochemical mechanism of marine ecological environment changes” (No.U1406403);The National Basic Research Program of China “Transportation and transformation of nutrients and theirenvironmental effects in the gulf”(No.2015CB452902)

氨基糖作为海洋环境中一类具有重要地球化学特征的有机质,其在海水、颗粒物和沉积物中的含量和组成等信息能够有效反映有机质的来源、降解过程及成岩状态。从氨基糖的来源与组成、海洋环境中的分布特征和影响因素,以及其作为生物标志物对有机质来源和降解状态的指示作用等方面,系统总结了海洋环境中氨基糖的研究进展。结果表明,氨基糖的活性受其大分子形态、环境中溶解氧、营养盐水平和沉积环境的影响。葡萄糖胺/半乳糖胺(GlcN/GalN)和总可水解氨基酸/总可水解氨基糖(THAA/THAS)对有机质来源和降解状态的指示具有一致性,较高的GlcN/GalN和THAA/THAS值可反映浮游生物来源的新鲜有机质,其比值的降低表明有机质逐渐向细菌有机质转化。氨基糖的碳、氮归一化含量对二者的指示具有差异性,其比例的升高和降低取决于有机质降解程度和来源影响的相对贡献大小。胞壁酸可用于估算较为新鲜的细菌有机质对总有机质的贡献,但由于其快速循环而导致在溶解有机质中的含量极低,不适合应用在溶解有机质中。今后的工作应进一步加强不同微生物对海洋环境中氨基糖的贡献,区分有机质来源和降解对氨基糖的影响以及转化和归宿研究。

As a kind of marine organic matter with important geochemical characteristics, amino sugars can effectively reflect the source, diagenetic state and mineralization process of organic matter by their concentration and composition in marine environment. This article systematically concluded the research progresses of amino sugars from the aspects of their source, composition and distribution characteristics in marine environment, and the role as a biomarker indicating source and diagenetic state of marine organic matter. The result showed that the macromolecular morphology, the oxygen and nutrient level and the sedimentary environment could affect the reactivity of amino sugars. The higher ratios of glucosamine to galactosamine (GlcN/GalN) and the Total Hydrolysable Amino Acids to Total Hydrolysable Amino Sugars (THAA/THAS) can reflect the fresh planktonic organic matter source and the lower ratios can reflect the conversion from planktonic to bacterial organic matter. The carbon and nitrogen normalized yield of total hydrolysable amino sugars, however, could give contradictory results depending on the relative contribution of the source and degradation degree of organic matter. Muramic acid is suitable to estimate the contribution of relatively fresh bacteria organic matter to particulate and sediment organic matter, but it is not suitable for applying in the dissolved organic matter because of its very low concentration leading from its rapid recycle. It is critical to enhance the research on the contribution of different microorganisms to amino sugars and differentiate the influence of organic matter source and degradation on amino sugars in marine environment. The research on the conversion and fate of amino sugars in marine environment is also needed.

中图分类号: 

表1 海洋DOM,UDOM,POM,SOM和沉降颗粒物中氨基糖的分布
Table 1 The distribution of AS in marine DOM, UDOM, POM, SOM and settling particulate matter
%THAS-TOC %THAS-TN GlcN/GalN THAS
/(μmol/(g dw))
THAS
/(nmol/L)
海域 参考文献
DOM 0.6 1.5(DON) 1.85 49 西北冰洋(0~100 m) [7]
0.2 0.7(DON) 1.4 11 西北冰洋(>1 000 m) [7]
UDOM 1.2±0.6 3.3±1.7 1.6±0.1 34.9±28.8 太平洋(0~4 000 m) [8]
1.1±0.6 3.1±1.7 1.7±0.2 23.6±21.7 大西洋(0~2 400 m) [8]
0.6±0.1 1.7±0.4 1.3±0.3 17.8±7.9 北冰洋(10~1 600 m) [8]
POM 0.6±0.3 0.8±0.4 1.9±0.2 0.7±0.6 太平洋(0~4 000 m) [8]
0.2±0.2 0.5±0.4 0.4±0.3 4.3±3.7 孟加拉湾(0~1 000 m) [9]
0.6 0.6 2.2 8.35 西北冰洋(0~100 m) [7]
2.1±0.9 2.8±0.8 1.1±0.3 127.2±48.1 曼多维河口雨季 [10]
0.7±0.2 0.6±0.2 1.8±0.4 64.4±12.8 曼多维河口雨季前期 [10]
沉降
颗粒物
2.0±0.9 1.9±0.9 5.8±2.0 17.8±9.5 赤道太平洋(1 357 m) [11]
1.9±0.4 1.9±0.4 4.2±0.8 10.8±3.5 赤道太平洋(4 363 m) [11]
0.8±0.4 1.9±0.8 6.9±3.0 马尾藻海(3 200 m) [12]
1.8±1.3 2.9±1.8 12.0±10.6 巴拿马海盆(890~3 560 m) [13]
1.9±0.3 3~4.5 12.9±2.4 中国南海(1 000~1 200 m) [14]
1.3 1.9 13.4 楚科奇海(<40 m) [15]
1.0 1.7 17.3 日本大槌湾(<30 m) [15]
1.1 1.7 27.4 日本喷火湾(<70 m) [15]
SOM 1.6±0.3 2.7±1.1 2.4±2.7 北海东部表层沉积物 [16]
2.1±0.2 3.7±0.6 1.6±0.1 35.4±11.8 秘鲁沿海表层沉积物(OMZ区) [17]
2.1±0.2 3.7±0.6 1.6±0.1 14.8±4.3 秘鲁沿海表层沉积物(非OMZ区) [17]
0.8 1.2 1.2 孟加拉湾表层沉积物 [18]
1.7±0.3 3.3±0.6 1.4±0.1 20.0±14.8 秘鲁沿海沉积物柱状样 [19]
0.4~1.5 n.a. 1.2±0.3 南极沉积物柱状样 [20]
2.1~3.2(2.6) 3.9 1.1~1.3(1.2) 巴西沿海表层沉积物 [21]
表2 氨基糖在生物体中的组成及含量
Table 2 Concentration and composition of AS in some organisms
图1 北冰洋和太平洋中POM和DOM,UDOM中AS含量和组成的差异(数据来自参考文献[7,8])
Fig.1 Differences of AS concentration and composition between POM, DOM and UDOM in Arctic and Pacific Ocean(data from references[7,8])
图2 太平洋POM(0.1~60 μm)中AS的垂直变化(数据来自参考文献[8])
Fig.2 Vertical changes of AS in POM(0.1~60 μm)of Pacific Ocean(data from reference[8])
图3 太平洋UDOM(<0.1 μm)中AS的垂直变化(数据来自参考文献[8])
Fig.3 Vertical changes of AS in UDOM(<0.1 μm) of Pacific Ocean(data from reference[8])
图4 近海及海湾沉降颗粒物中氨基糖的垂直变化(数据来自参考文献[15])
Fig.4 Vertical changes of AS in settling particulate matter of coastal area and bays (data from reference[15])
图5 赤道太平洋沉降颗粒物中氨基糖的垂直变化(数据来自参考文献[11])
Fig.5 Vertical changes of AS in settling particulate matter of equatorial pacific(data from reference[11])
图6 秘鲁沉积物中氨基糖随沉积物深度的变化(数据来自参考文献[18])
Fig.6 Vertical changes of AS in Peru sediment(data from reference[18])
表3 利用MurA和D-Ala估算细菌有机质对总有机碳、总氮的贡献
Table 3 Estimating the contribution of bacteria organic matter to TOC, TN by using MurA and D-Ala
[1] Harvey H.Sources and cycling of organic matter in the marine water column[M]∥Volkman J K, ed. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin: Springer, 2006: 1-25.
[2] Chester R, Jickells T.Marine Geochemistry[M]. London: Wiley-Blackwell, 2012: 273-289.
[3] Zhao Bin, Yao Peng, Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J]. Advances in Earth Science, 2016, 31(11): 1 151-1 158.
[赵彬,姚鹏,于志刚.有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展, 2016, 31(11): 1 151-1 158.]
[4] Bourgoin L H, Tremblay L.Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J].Geochimica et Cosmochimica Acta, 2010, 74(19): 5 593-5 609.
[5] Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al.Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
[朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011, 26(4): 355-364.]
[6] Hedges J I, Keil R G, Benner R.What happens to terrestrial organic matter in the ocean?[J].Organic Geochemistry, 1997, 27(5): 195-212.
[7] Davis J, Benner R.Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin[J].Deep-Sea Research II: Topical Studies in Oceanography, 2005, 52(24/26): 3 396-3 410.
[8] Benner R, Kaiser K.Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter[J].Limnology and Oceanography, 2003, 48(1): 118-128.
[9] Fernandes L, D’Souza F, Matondkar S G P,et al. Amino sugars in suspended particulate matter from the Bay of Bengal during the summer monsoon of 2001[J]. Journal of Earth System Science, 2006, 115(3): 363-370.
[10] Khodse V B, Bhosle N B.Distribution, origin and transformation of amino sugars and bacterial contriution to estuarine particulate organic matter[J].Continental Shelf Research, 2013, 68: 33-42.
[11] Gupta L P, Kawahata H.Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J].Deep Sea Research I: Oceanographic Research Papers, 2000, 47(10): 1 937-1 960.
[12] Ittekkot V, Deuser W G, Degens E T.Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea[J].Deep Sea Research, 1984, 31:1 057-1 069.
[13] Ittekkot V, Degens E T, Honjo S.Seasonality in the fluxesof sugars, amino acids, and amino sugars to the deep ocean: Panama Basin[J]. Deep Sea Research,1984, 31(9): 1 071-1 083.
[14] Lahajnar N, Wiesner M G, Gaye B.Fluxes of amino acids and hexosamines to the deep South China Sea[J].Deep-Sea Research I: Oceanographic Research Papers, 2007, 54(12): 2 120-2 144.
[15] Hashimoto S, Maita Y.Fluxes of amino acid and hexosamine in sinking particles in subarctic and arctic coastal region[J]. Journal of Oceanography, 2003, 59(5): 731-738.
[16] Dauwe B, Middelburg J J.Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J].Limnology and Oceanography, 1998, 43(5): 782-798.
[17] Lomstein B A, Niggemann J, Jørgensen B B,et al.Accumulation of prokaryotic remains during organic matter diagenesis in surface sediments off Peru[J]. Limnology and Oceanography, 2009, 54(4): 1 139-1 151.
[18] Gupta L P, Kawahata H.Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J]. Deep-Sea Research I, 2000, 47(10):1 937-1 960.
[19] Niggemann J, Schubert C J.Sources and fate of amino sugars in coastal Peruvian sediments[J].Geochimica et Cosmochimica Acta, 2006, 70(9):2 229-2 237.
[20] Liebezeit G.Amino sugars in Bransfield Strait and Weddell Sea sediments[J].Senckenberiana Maritime, 1993, 23(1): 29-35.
[21] Jennerjahn T C, Ittekkot V.Changes in organic matter from surface waters to continental slope sediments off the Sao Francisco River, eastern Brazil[J].Marine Geology,1999, 161(2/4): 129-140.
[22] Brock T D, Madigan M T, Martinko J M, et al.Biology of Microorganisms[M]. New Jersey:Prentice Hall, 1994.
[23] Messner P.Bacterial Glycoproteins[J].Glycoconjugate Journal, 1997, 14(1):3-11.
[24] Trefzer A, Salas J A, Bechthold A.Genes and enzymes involved in deoxysugar biosynthesis in bacteria[J].Nature Production Report, 1999, 16(3): 283-299.
[25] Schleifer K H, Kandler O.Peptidoglycan types of bacterial cell walls and their taxonomic implications[J].Bacteriological Reviews, 1972, 36(4): 407-477.
[26] Niggemann J, Schubert C J.Sources and fate of amino sugars in coastal Peruvian sediment[J].Geochimica et Cosmochimica Acta, 2006, 70(9): 2 229-2 237.
[27] Kaiser K, Benner R.Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen[J].Limnology and Oceanography, 2008, 53(3): 99-112.
[28] Moriarty D J W. Improved method using muramic acid to estimate biomass of bacteria in sediments[J].Oecologia, 1977, 26(4): 317-323.
[29] Carstens D, Schubert C J.Amino acid and amino sugar transformation during sedimentation in lacustrine system[J]. Organic Geochemistry, 2012, 50(3): 26-35.
[30] Jeuniaux C.Chitine et Chitinolyse:Un Chapitre de Biologie Moléculaire[M]. Paris: Masson,1963: 181.
[31] Jeuniaux C.Chitine et phylogénie: Application d’une méthode enzymatique de dosage de la chitine[J].Bulletin des Societes Chimiques Belges, 1965, 47(12): 2 267-2 278.
[32] Jeuniaux C.La chitine dans le règne animal[J].Bulletin de la Société Zoologique de France,1982, 107(3): 363-386.
[33] Bussers J C, Jeuniaux C.Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés[J].Protistologica, 1974, 10(4): 43-46.
[34] Rosati G, Verni F, Ricci N.The cyst of Oxytricha bifaria (Ciliata Hypotrichida). III. Cytochemical investigation[J]. Protistologica, 1984, 20: 197-204.
[35] Mulisch M.Chitin in protistan organisms[J].European Journal of Protistology,1993, 29(1): 1-18.
[36] Muzzarelli R A A. Chitin[M]. New York: Pergamon Press, 1977: 309.
[37] Kapaun E, Reisser W.A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae)[J]. Planta, 1995, 197(4): 577-582.
[38] Herth W, Schnepf E.Chitin-fibril formation in algae[M]∥Brown R M,ed. Cellulose and Other Natural Polymer Systems. New York: Plenum Press, 1982: 185-206.
[39] Herth W, Kuppel A, Schnepf E.Chitinous fibrils in the lorica of the flagellate chrysophyte Poterioochromonas stipitata (syn. Ochromonas malhamensis)[J]. Journal of Cell Biology, 1977, 73(2): 311-321.
[40] Henry M C.Chitin production by arthropods in the Hydrosphere[J].Hydrobiologia, 2002, 470(1/3): 63-96.
[41] Kirchman D L, White J.Hydrolysis and mineralization of chitin in the Delaware estuary[J].Aquatic Microbial Ecology,1999, 18(2): 187-196.
[42] Kawasaki N, Benner R.Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition[J].Limnology and Oceanography, 2006, 51(5):2 170-2 180.
[43] Giroldo D, Vieira A A H. An extracellular sulfated fucose-rich polysaccharide produced by a tropical strain of Cryptomonas obovata (Cryptophyceae)[J].Journal of Applied Phycology, 2002, 14(3): 185-191.
[44] Kudo F, Kawabe K, Kuriki H,et al.A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics[J].Journal of American Chemical Society, 2005, 127(6): 1 711-1 718.
[45] Nagata T, Meon B, Kirchman D L.Microbial degradation of peptidoglycan in seawater[J].Limnology and Oceanography, 2003, 48(2): 745-754.
[46] Jørgensen N O G, Tepanaukas R S, Pedrson A G U,et al. Occurrence and degradation of peptidoglycan in aquatic environments[J]. FEMS Microbiology Ecology, 2003, 46(3): 269-280.
[47] Baas M, Briggs D E G, van Heemst,et al. Selective preservation of chitin during the decay of shrimp[J]. Geochimica et Cosmochimica Acta,1995, 59(5): 945-951.
[48] Gooday G W.The ecology of chitin degradation[M]∥Marshall K C, ed. Advances in Microbial Ecology. London: Plenum Press, 1990: 387-440.
[49] Kirchman D L.The uptake of inorganic nutrients by heterotrophic bacteria[J].Microbial Ecology, 1994, 28(2): 255-271
[50] Ding Xueli, He Hongbo, Zhang Bin, et al.Plant-N incorporation into microbial amino sugars as affected by inorganic N addition: A microcosm study of 15N-labeled maize residue decomposition[J].Soil Biology and Biochemistry, 2011, 43(9): 1 968-1 974.
[51] Ogawa H, Amagai Y, Koike I,et al.Production of refractory dissolved organic matter by bacteria[J]. Science, 2015, 292(5 518): 917-920.
[52] Dauwe B, Middelburg J J.Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J]. Limnology and Oceanography, 1998, 43(5): 782-798.
[53] Mopper K, Degens E T.Aspects of Biogeochemistry of Carbohydrates and Proteins in Aquatic Environments[R]. Woods Hole Oceanographic Institute Technical Report, 1972.
[54] Mayzaud P, Martin J L M. Some aspects of the biochemical and mineral composition of marine plankton[J].Journal of Experimental Marine Biology, 1975, 17(3): 297-310.
[55] Moriarty D J W. Method for estimating biomass of bacteria in aquatic sediments and its application to trophic studies[J].Oecologia, 1975, 20(3): 219-229.
[56] Bourgoin L H, Tremblay L.Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5 593-5 609.
[57] Tremblay L, Benner R.Organic matter diagenesis and bacterial contributions to detrital carbon and nitrogen in the Amazon River system[J].Limnology and Oceanography, 2009, 54(3): 681-691.
[58] Moriarty D J W, Hayward A C. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments[J].Microbial Ecology, 1982, 8(1):1-14.
[59] Giovannoni S, Rappe M.Evolution, diversity, and molecular ecology of marine prokaryotes[M]∥Kirchman D L,ed. Microbal Ecology of the Oceans. Wiley, 2000: 47-84.
[60] Kawasaki N, Sohrin R, Ogawa H,et al.Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean[J]. Aquatic Microbial Ecology, 2011, 62(C6): 165-176.
[61] Lee S, Fuhrman J A.Relationship between biovolume and biomass of naturally derived marine bacterioplankton[J].Applied and Environmental Microbiology, 1987, 53(6):1 298-1 303.
[1] 魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.
[2] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
阅读次数
全文


摘要