地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 885 -898. doi: 10.11867/j.issn.1001-8166.2017.08.0885

上一篇    

珠三角平原区第四系剖面重金属分布特征及其影响因素
唐志敏 1, 2( ), 侯青叶 1, *( ), 游远航 3, 杨忠芳 1, 李括 4   
  1. 1.中国地质大学(北京)地球科学与资源学院,北京 100083
    2.中国地质调查局南京地质调查中心, 江苏 南京 210016
    3.广东省地质调查院,广东 广州 510080
    4.中国地质科学院地球物理地球化学勘查研究所,河北 廊坊 065000
  • 收稿日期:2017-02-28 修回日期:2017-05-05 出版日期:2017-10-20
  • 通讯作者: 侯青叶 E-mail:tangzmh@163.com;qingyehou@126.com
  • 基金资助:
    中国地质调查局地质大调查项目“珠江三角洲土壤重金属地球化学成因与风险评价”(编号:12120115050401);痕迹科学与技术公安部重点实验室开放课题(编号:2015FMKFKT03)资助

Distribution Characteristics and Influencing Factors of Heavy Metals in Pearl River Delta Quaternary Boreholes

Zhimin Tang 1, 2( ), Qingye Hou 1, *( ), Yuanhang You 3, Zhongfang Yang 1, Kuo Li 4   

  1. 1.School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
    2.Nanjing Center,China Geological Survey,Nanjing 210016,China
    3.Guangdong Institute of Geological Survey, Guangzhou 510080,China
    4.Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Hebei Langfang 065000, China
  • Received:2017-02-28 Revised:2017-05-05 Online:2017-10-20 Published:2017-08-20
  • Contact: Qingye Hou E-mail:tangzmh@163.com;qingyehou@126.com
  • About author:

    First author:Tang Zhimin(1992-),male,Mianyang City,Sichuan Province,Master student. Research areas include environmental geochemistry.E-mail:tangzmh@163.com

  • Supported by:
    Project supported by the China Geological Survey “Geochemical genesis and risk assessment of heavy metals in Pearl River Delta soil”(No.12120115050401);The Opening Project of Key Laboratory of Trace Science and Technology, Ministry of Public Security(No.2015FMKFKT03)

选取珠江三角洲冲积平原区4个不同沉积相带的第四系岩心做元素全量分析,并对4种重金属进行了赋存形态分数分析,揭示了珠江三角洲第四系元素地球化学特征主要受物源和沉积环境的控制。不同沉积环境下物源的影响程度不同,物源在三角洲平原相的沉积环境下影响强度最大,在海陆交互强烈的沉积环境下,物源的影响减弱,海陆交互作用的影响增强。不同重金属元素由于自身化学性质的差异,其对沉积环境的敏感程度有所不同。研究区Cd富集显著,且其活性态比例最高、潜在生态风险最大;而As,Hg和Pb的富集程度较弱,且As和Hg主要以残渣态的形式存在,Pb主要以残渣态和铁锰氧化物态为主,它们的生态风险相对较低。不同的沉积环境下pH等理化指标对Cd形态的影响不同,Cd的活动态主要与pH和淋滤系数有关。

This paper analyzed contents and geochemical fractions of four heavy metals in four Quaternary boreholes from different sedimentary areas in Pearl River Delta. The results revealed that the geochemical features of heavy metals were controlled by geological provenance and sedimentary environment. The contribution rates of geological sources showed differentiation in four sedimentary environments. In delta plain sedimentary environment, geological sources were the most predominant. In the sea land interaction sedimentary environment, the control of the geological source factor was weakened. The effect of land-sea interaction became more important. Due to different chemical properties of heavy metals, they showed distinct sensitivities to sedimentary environment. Cadmium (Cd) was enriched significantly in the study areas. Mobile fraction of Cd possessed the highest proportion. Potential ecological risk of Cadmium was the highest among heavy metals. Asenic, mercury and lead were enriched weakly. Arsenic and Mercury were dominated by residual fraction. Lead was mainly composed of residual and Fe-Mn oxidation fraction. Their potential ecological risks were relatively lower. In different sedimentary environment, physicochemical parameters had various effects on Cadmium geochemical fraction such as pH. The mobile fraction of Cd was mainly correlated with pH and leaching coefficient.

中图分类号: 

图1 珠江三角洲第四纪岩心分布图
Fig.1 Location of Quaternary boreholes in Pearl River delta
表1 珠江三角洲第四纪沉积物岩心一览表
Table 1 General information of Quaternary boreholes in Pearl River delta
表2 As,Cd,Hg和Pb不同形态分析检出限要求
Table 2 Requirements of detection limits to various species of As, Cd, Hg and Pb
图2 佛山市三水县Ⅱ03岩心元素分布图
Fig.2 Distribution of elements inⅡ03 borehole of Sanshui County, Foshan City
图3 佛山市南海区Ⅲ03岩心元素分布图
Fig.3 Distribution of elements in Ⅲ03 borehole of Nanhai District, Foshan City
图4 中山市东凤镇Ⅰ07岩心元素分布图
Fig.4 Distribution of elements in Ⅰ07 borehole of Dongfeng Town, Zhongshan City
图5 中山市三角镇Ⅳ03岩心元素分布图
Fig.5 Distribution of elements in Ⅳ03 borehole of Sanjiao Town, Zhongshan City
表3 各岩心重金属元素描述统计量
Table 3 Descriptive statistics of heavy metals in each borehole
图6 各岩心重金属元素形态分布图
Ⅱ03.佛山市三水县岩心;Ⅲ03.佛山市南海区岩心;Ⅰ07.中山市东凤镇岩心;Ⅳ03.中山市三角镇岩心
Fig.6 Geochemical fraction distribution of heavy metals in each borehole
Ⅱ03.Borehole in Sanshui County, Foshan City; Ⅲ03.Borehole in Nanhai District, Foshan City; Ⅰ07.Borehole in Dongfeng Town, Zhongshan City; Ⅳ03.Borehole in Sanjiao Town, Zhongshan City
表4 各岩心重金属形态比例平均值(单位:%)
Table 4 Average geochemical fraction of heavy metals in each borehole (unit:%)
表5 各岩心及其他地区重金属含量
Table.5 Heavy metal content in each borehole and other areas
图7 各岩心主成分载荷图
Ⅱ03.佛山市三水县岩心;Ⅲ03.佛山市南海区岩心;Ⅰ07.中山市东凤镇岩心;Ⅳ03.中山市三角镇岩心
Fig.7 Component loading in each borehole
Ⅱ03.Borehole in Sanshui County, Foshan City; Ⅲ03.Borehole in Nanhai District, Foshan City; Ⅰ07.Borehole in Dongfeng Town, Zhongshan City; Ⅳ03.Borehole in Sanjiao Town, Zhongshan City
表6 元素主成分分析结果
Table 6 Principal component analysis of elments
钻孔号 Ⅰ07 Ⅱ03 Ⅲ03 Ⅲ03
主成分 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC4
Si -0.87 -0.38 0.00 -0.92 0.11 0.07 -0.86 0.12 0.25 -0.96 0.14 -0.02 0.11
Al 0.98 -0.07 -0.13 0.95 -0.05 0.14 0.87 -0.40 -0.08 0.88 0.38 -0.01 -0.18
Fe 0.97 0.01 0.00 0.99 -0.05 -0.06 0.81 0.10 -0.51 0.87 -0.28 0.01 -0.25
Mg 0.96 0.10 0.16 0.98 0.02 -0.12 0.94 -0.18 -0.19 0.86 -0.45 0.06 0.05
Ca 0.26 0.87 0.28 0.48 0.38 -0.53 0.78 0.50 -0.02 0.15 -0.79 0.44 0.28
Na 0.55 0.55 0.17 0.57 0.70 0.00 0.93 0.07 0.22 0.64 -0.14 0.20 0.10
K 0.89 -0.23 -0.08 0.57 0.50 0.54 0.65 -0.37 0.39 0.84 0.19 -0.30 -0.07
As 0.92 -0.21 -0.08 0.67 -0.40 0.51 0.91 -0.04 -0.20 0.82 -0.36 -0.15 -0.16
Cd 0.65 0.28 -0.49 0.91 0.02 -0.26 0.69 -0.12 0.63 0.15 0.53 0.33 0.49
Cr 0.97 -0.10 0.17 0.96 -0.03 -0.16 0.92 -0.21 -0.28 0.93 0.24 0.09 -0.21
Cu 0.96 -0.09 -0.17 0.10 -0.86 -0.26 0.95 0.23 -0.05 0.88 0.20 -0.17 -0.02
Hg 0.86 -0.14 -0.05 0.79 -0.02 0.10 0.71 0.62 0.26 0.53 0.17 0.46 -0.31
Ni 0.98 0.05 -0.16 0.98 -0.11 -0.07 0.93 -0.26 0.08 0.85 0.15 -0.13 0.41
P 0.92 -0.08 0.25 0.90 0.03 -0.33 0.77 0.51 -0.22 0.77 -0.43 -0.07 -0.01
Pb 0.95 -0.15 -0.10 0.68 -0.30 0.62 0.85 0.21 0.30 0.74 0.10 -0.28 0.36
Ti 0.94 -0.20 0.22 0.92 0.24 -0.06 0.89 -0.24 -0.20 0.87 0.35 0.20 -0.19
Zn 0.97 0.08 -0.19 0.92 -0.34 0.03 0.93 -0.05 0.28 0.83 0.00 -0.12 0.46
Zr 0.39 -0.24 0.80 0.11 0.71 0.18 0.61 -0.14 0.04 0.23 0.14 0.84 0.06
方差的百分比 73.76 8.74 7.07 63.10 14.27 8.75 70.25 8.57 7.85 57.12 11.22 8.65 6.45
累积百分比 73.76 82.50 89.56 63.10 77.37 86.12 70.25 78.82 86.67 57.12 68.33 76.99 83.44
图8 各岩心Ca-Na-Ti三角图(底图引自参考文献[17])
Ⅱ03.佛山市三水县岩心;Ⅲ03.佛山市南海区岩心;Ⅰ07.中山市东凤镇岩心;Ⅳ03.中山市三角镇岩心
Fig.8 Triangular chart of Ca-Na-Ti in each borehole (Base map from the reference[17])
Ⅱ03.Borehole in Sanshui County, Foshan City; Ⅲ03.Borehole in Nanhai District, Foshan City; Ⅰ07.Borehole in Dongfeng Town,Zhongshan City; Ⅳ03.Borehole in Sanjiao Town, Zhongshan City
图9 各岩心重金属元素含量箱线图
Ⅱ03.佛山市三水县岩心;Ⅲ03.佛山市南海区岩心;Ⅰ07.中山市东凤镇岩心;Ⅳ03.中山市三角镇岩心
Fig.9 Box plot of heavy metal concentration in each borehole
Ⅱ03.Borehole in Sanshui County, Foshan City; Ⅲ03.Borehole in Nanhai District, Foshan City; Ⅰ07.Borehole in Dongfeng Town, Zhongshan City; Ⅳ03.Borehole in Sanjiao Town, Zhongshan City
图10 各岩心Cd形态与pH,SiO 2/MgO相关图
Fig.10 Fraction of Cd vs pH,SiO 2/MgO in each borehole
[1] Huang Zhenguo, Li Pingri, Zhang Zhongying, et al.Characteristics of the Quaternary deposits in the Zhujiang (Pearl) Delta[J]. Geological Review, 1985, 31(2): 159-164.
[黄镇国, 李平日, 张仲英, 等. 珠江三角洲第四纪沉积特征[J]. 地质论评, 1985, 31(2): 159-164.]
[2] Kuang Yaoqiu, Yao Zhiyuan, Huang Ningsheng, et al.Comparative study of population density in flat area between the Pearl River Basin in China and Kanto Basin in Japan[J]. Tropical Geography, 2014, 34(2): 217-224.
[匡耀求, 姚志远, 黄宁生, 等. 中国珠三角盆地和日本关东盆地平地人口密度对比研究[J]. 热带地理, 2014, 34(2): 217-224.]
[3] Bai Jinmei, Liu Xueping.Heavy metal pollution in surface soils of Pearl River Delta, China[J]. Environmental Monitoring Assessment, 2014, 186: 8 051-8 061.
[4] Ma Jin, Pan Genxing, Wan Hongfu, et al.Investigation on heavy metal pollution in a typical area of the Pearl River Delta[J]. Chinese Journal of Soil Science, 2004, 35(5): 636-638.
[马瑾, 潘根兴, 万洪富, 等. 珠江三角洲典型区域土壤重金属污染探查研究[J]. 土壤通报, 2004, 35(5): 636-638.]
[5] Lai Qihong, Yu Haiping, Li Guoping, et al.Chemical characteristics of soil Cd-high areas in Zhujiang Delta[J]. Geophysical and Geochemical Exploration, 2005, 29(4): 334-335.
[赖启宏, 余海平, 李国平, 等. 珠江三角洲土壤镉高含量区的化学形态特征[J]. 物探与化探, 2005, 29(4): 334-335.]
[6] Liu Zining, Dou Lei, Zhang Wei.Distribution and origin of cadmium in the Quaternary sediments of the Pearl River Delta Plain, Guangdong Province, Southern China[J]. Geological Bulletin of China, 2012, 31(1): 172-180.
[刘子宁, 窦磊, 张伟. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012, 31(1): 172-180.]
[7] Han Chunmei, Wang Linshan, Gong Zongqiang, et al.Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005,24(12): 1 499-1 502.
[韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005,24(12): 1 499-1 502.]
[8] Liu Fangwen, Yan Wen, Wang Wenzhi, et al.Pollution of heavy metals in the Pearl River Estuary and its assessment of potential ecological risk[J]. Marine Environmental Science, 2002, 21(3): 34-38.
[刘芳文, 颜文, 王文质, 等. 珠江口沉积物重金属污染及其潜在生态危害评价[J]. 海洋环境科学, 2002, 21(3): 34-38.]
[9] Yang Zhongfang, Cheng Hangxin, Xi Xiaohuan, et al.Regional ecological geochemical assessment: Ideas and prospects[J]. Geological Bulletin of China, 2005, 24(8): 687-693.
[杨忠芳, 成杭新, 奚小环, 等. 区域生态地球化学评价思路及建议[J]. 地质通报, 2005, 24(8): 687-693.]
[10] Li Wensheng, Dou Lei, Liu Zining.Element geochemical characteristics and controlling factors of the Quaternary Sediments in the Pearl River Delta Plain[J]. Geology and Mineral Resources of South China, 2016, 32(1): 68-77.
[李文胜, 窦磊, 刘子宁. 珠江三角洲平原区第四纪沉积物地球化学特征及其控制因素[J]. 华南地质与矿产, 2016, 32(1): 68-77.]
[11] National Environmental Protection Agency, State Bureau of Technical Supervision. Environmental Quality Standard for Soils:GB15618-1995[S].Beijing:China Environmental Science Ress,1995.
[国家环境保护局,国家技术监督局. 土壤环境质量标准:GB15618-1995 [S].北京:中国环境科学出版社,1995.]
[12] China National Environmental Monitoring Centre. Chinese Soil Element Background Value[M]. Beijing: China Environmental Science Press, 1990.
[中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.]
[13] Rudnick R, Gao S.Composition of the Continental Crust[M]. Oxford: Elsevier-Pergamon Oxford, 2003.
[14] Zhang Ming, Chen Guoguang, Liu Hongying, et al.Spatial distribution characteristics of heavy metal in soils of Yangtze River Delta[J]. Chinese Journal of Soil Science, 2012, 43(5): 1 098-1 103.
[张明, 陈国光, 刘红樱, 等. 长江三角洲地区土壤重金属含量及其分异特征[J]. 土壤通报, 2012, 43(5): 1 098-1 103.]
[15] Miao Xiongyi, Ye Siyuan, Hao Yupei, et al.Assessment of heavy metal contamination in the surface soil of the Yellow River Delta, China[J]. Marine Sciences, 2016, 40(2): 65-76.
[缪雄谊, 叶思源, 郝玉培, 等. 黄河三角洲表层土壤重金属环境质量评价[J]. 海洋科学, 2016, 40(2): 65-76.]
[16] Chi Qinghua, Yan Mingcai.Handbook of Elemental Abundance for Applied Geochemistry[M]. Beijing: Geology Publishing House, 2007.
[迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.]
[17] Négrel P, Sadeghi M, Ladenberger A, et al.Geochemical fingerprinting and source discrimination of agricultural soils at continental scale[J]. Chemical Geology, 2015, 396:1-15.
[18] Yang Muzhuang, Lai Qihong, Zhou Shungui.Relationship of the soil fluorine enrichment and marine invasion in the Pearl River Delta[J]. Marine Geology and Quaternary Geology, 2008, 28(5): 17-20.
[杨木壮, 赖启宏, 周顺桂. 珠江三角洲海侵过程与土壤氟元素的富集效应[J]. 海洋地质与第四纪地质, 2008, 28(5): 17-20.]
[19] Yang Yongqiang, Liu Zhuli, Chen Fanrong, et al.Assessment of trace element contamination in sediment cores from the Pearl River and estuary, South China: Geochemical and multivariate analysis approaches[J]. Environmental Monitoring and Assessment, 2014, 186:8 089-8 107.
[20] Zhang Xuhui, Shao Qianqian, Ding Yuanjun, et al.Societal responsibility and development trends of global soil studies and the provisions for China: Lessons from the status of the World’s Soil Resources Report[J]. Advances in Earth Science,2016,31(10):1 012-1 020.
[张旭辉,邵前前,丁元君,等. 从《世界土壤资源状况报告》解读全球土壤学社会责任和发展特点及对中国土壤学研究的启示[J].地球科学进展,2016,31(10):1 012-1 020.]
[1] 杨隽豪, 王勇生, 白桥, 马威威. 合肥盆地中部中—新生界沉积岩碎屑锆石 LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2022, 37(8): 871-880.
[2] 曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(5): 462-471.
[3] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[4] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[5] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[6] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[7] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[8] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[9] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[10] 罗超, 郑洪波, 吴卫华, 杨守业. 长江河水 87Sr/ 86Sr值的季节性变化及其指示意义:以长江大通站为例 1[J]. 地球科学进展, 2014, 29(7): 835-843.
[11] 张兆永, 吉力力·阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[12] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[13] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[14] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[15] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
阅读次数
全文


摘要