地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 789 -799. doi: 10.11867/j.issn.1001-8166.2017.08.0789

   下一篇

柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据
谷洪彪( ), 迟宝明 *( ), 王贺, 张耀文, 王明远   
  1. 防灾科技学院, 河北 三河 065201
  • 收稿日期:2017-02-10 修回日期:2017-06-11 出版日期:2017-10-20
  • 通讯作者: 迟宝明 E-mail:hongbiaosw@126.com;chibaoming@126.com
  • 基金资助:
    2014年度河北省普通高等学校青年拔尖人才计划项目“柳江盆地浅层地下水补给及硝酸盐运移规律”(编号:BJ201403)资助

Relationship Between Surface Water and Groundwater in the Liujiang Basin—Hydrochemical Constrains

Hongbiao Gu( ), Baoming Chi *( ), He Wang, Yaowen Zhang, Mingyuan Wang   

  1. Institute of Disaster Prevention, Sanhe Hebei 065201, China
  • Received:2017-02-10 Revised:2017-06-11 Online:2017-10-20 Published:2017-08-20
  • Contact: Baoming Chi E-mail:hongbiaosw@126.com;chibaoming@126.com
  • About author:

    First author:Gu Hongbiao(1984-),male,Heze City,Shandong Province,Associate professor. Research areas include groundwater engineering and earthquake underground fluid.E-mail:hongbiaosw@126.com

  • Supported by:
    Project supported by the Young Talent Project for General Institute of Higher Education in Hebei Province “Characteristic of shallow groundwater recharge and nitrate-transport in Liujiang Basin”(No.BJ201403)

地表水与地下水相互作用是水循环研究的重要组成部分,是研究区域水资源量的基础。通过实地水文地质调查和采样,在对水体氢氧稳定同位素和水化学组成测定的基础上,分析了盆地内枯水期河水和地下水的水化学和氢氧同位素组成特征及空间变化规律,旨在揭示河水与地下水的相互转化关系。研究表明:盆地内地下水主要为HCO3-Ca和HCO3-Ca·Mg类型低矿化度水,各区域地下水具有统一联系性,经历了相同或相似的水化学形成作用;河水水化学类型与地下水相同,且水化学成分来源一致。地下水和河水氢氧同位素组成相接近,最终来源主要为大气降水补给。其中河水在径流过程中受蒸发浓缩作用影响,重同位素略富集。受地形地貌、地质及水文地质条件影响,盆地内地下水与河水之间的补给—排泄相互作用关系具有明显的分段性,相互转化频繁。大石河上游区域和东宫河流域总体上表现为河水受两侧地下水补给;大石河下游区域,表现为河水补给两侧地下水。

The interaction between surface water and groundwater is not only an important part of the water cycle, but also the foundation of the study on regional water resources quantity. The field hydrogeological investigation and sampling in the Liujiang basin were conducted in the dry season, in April, 2015. The isotopic ratios of hydrogen and oxygen and ion compositions as well as the hydrogeochemical characteristics indicated that the groundwater in the basin was mainly HCO3-Ca and HCO3-Ca·Mg type low salinity water. The groundwater of each region had a unified connection, experiencing the same or similar hydrochemical formation, and the surface water had the same hydrochemical type and source of hydrochemical composition as groundwater. The hydrogen and oxygen isotopic compositions of surface water and groundwater were close to each other, which were mainly from the atmospheric precipitation. In the runoff process, the river water was affected by the evaporation concentration so that the heavy isotopes were slightly enriched. Under the influence of topographical, geological and hydrogeological conditions, the interaction between groundwater and surface water in the basin had obvious segmentation and mutual transformation. The river was recharged by both sides of groundwater in upstream region of Dashi River and Donggong River basin while river water supplied groundwater on both sides of it in downstream region of Dashi River.

中图分类号: 

图1 研究区地质简图
Fig.1 Geological map of the study area
图2 研究区地理位置及采样点分布示意
Fig.2 Position of the study area and the map of sampling points
图3 研究区河水和地下水水化学Piper图
Fig.3 The Piper diagram of river water and groundwater in the study area
表1 研究区地表水和地下水水化学组分描述性统计分析
Table 1 Descriptive statistical analysis of chemical components of surface water and groundwater in the study area
图4 Gibbs图解法比较柳江盆地各水体水化学特征
Fig.4 Comparison of water chemistry characteristics of Liujiang Basin using Gibbs graphical method
图5 研究区河水和地下水电导率空间分布特征
Fig.5 Spatial distribution of EC of river water and groundwater in the study area
图6 研究区河水δD,δ 18O沿程变化特征
Fig.6 Variation of the river water δD,δ 18O along the distance in the study area
图7 研究区地下水δD,δ 18O随井深变化特征
Fig.7 Variation of the groundwater δD,δ 18O with the depth of wells in the study area
图8 研究区不同水体δD-δ 18O关系图
Fig.8 δD-δ 18O relationship of different water bodies in the study area
图9 研究区地下水与地表水相互作用关系示意
Fig.9 Relationship between groundwater and surface water in the study area
图10 研究区大石河流域河水与地下水δD,δ 18O关系图
Fig.10 The relationship between δD and δ 18O of river water and groundwater in Dashi River Basin
图11 研究区东宫河流域河水与地下水δD和δ 18O关系图
Fig.11 The relationship between δD and δ 18O of river water and groundwater in Donggong River Basin
[1] Xia Jun, Heung Wong, Wai Cheung Ip.Water problems and sustainability in North China. Water resources system, water availability and global change[C]∥Proceeding of Symposium HS02a held During IUGG2003.Sapporo:International Association of Hydrological Sciences,2003.
[2] Zhao Yuhua.Study on sustainable utilization of water resources in Qinhuangdao[J]. Agro-Environment & Development, 1998, 4: 1-3.
[赵玉华. 秦皇岛市水资源持续利用研究[J]. 农业环境与发展, 1998, 4: 1-3.]
[3] Song Yang, Chi Baoming, Gu Hongbiao, et al.Study on groundwater cycle in Donggong River Basin using data of hydrochemistry, D and 18O[J]. Research Soil and Water Conservation, 2015, 22(2): 90-95.
[宋洋, 迟宝明, 谷洪彪, 等. 基于水化学及D、18O的柳江盆地东宫河流域地下水循环特征解析[J]. 水土保持研究, 2015, 22(2): 90-95.]
[4] Arie Lssar, Joel Gat.Environmental isotopes as tool in hydrogeological research in an arid basin[J].Ground Water, 1981, 19(5): 490-494.
[5] Song Xianfang, Li Fadong, Yu Jingjie, et al.Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin[J]. Geographical Research, 2007, 26(1): 11-21.
[宋献方,李发东,于静洁,等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, 26(1): 11-21.]
[6] Zhan Lucheng, Chen Jiansheng, Zhang Shiyin, et al.Characteristics of stable isotopes in precipitation,surface water and groundwater in the Dongting Lake region[J]. Advances in Water Science, 2014, 25(3): 327-335.
[詹泸成, 陈建生, 张时音, 等. 洞庭湖湖区降水—地表水—地下水同位素特征[J].水科学进展, 2014, 25(3): 327-335.]
[7] Song Xianfang, Liu Xiangchao, Xia Jun, et al.Relationship between surface water and groundwater using environmental isotope technique in Huaisha River Basin[J]. Scientia Sinica Terrae, 2007, 37(1): 102-110.
[宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学: 地球科学, 2007, 37(1): 102-110.]
[8] Jiao Yanjun, Wang Guangcai, Cui Linfeng, et al.Characteristics of hydrochemistry and stable hydrogen,oxygen isotopes in surface water and groundwater in Jiyuan Basin[J]. Environmental Chemistry, 2014, 33(6): 962-968.
[焦艳军, 王广才, 崔霖峰, 等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征[J]. 环境化学, 2014, 33(6): 962-968.]
[9] Zhang Bing, Song Xianfang, Zhang Yinghua, et al.Hydrogen and oxygen isotopic and hydrochemical characteristics of water in Sanjiang Plain[J]. Journal of China Hydrology, 2014, 34(2): 38-43.
[张兵, 宋献方, 张应华, 等. 三江平原地表水与地下水氢氧同位素和水化学特征[J]. 水文, 2014, 34(2): 38-43.]
[10] Hu Yue, Liu Chuankun, Lu Yuehan, et al.Application of environmental isotopes in understanding hydrological processes of the Heihe River Basin[J]. Advances in Earth Science, 2014, 29(10): 1 158-1 166.
[胡玥, 刘传琨, 卢粤晗, 等. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1 158-1 166.]
[11] Tian Jisheng.An analysis of the enrichment rule karst groundwater in Liujiang Basin[J]. Journal of Hebei Institute of Geology, 1985, 4: 20-24.
[田级生. 柳江盆地岩溶水富水规律剖析[J]. 河北地质学院学报,1985, 4: 20-24.]
[12] Yao Yujun.The analysis of the endogenetic force of the structural land form of the Liujiang Basin[J]. Journal of Tianjin Normal University(Natural Science Edition), 1996, 16(2): 61-63.
[姚玉君. 柳江盆地构造地貌的内营力分析[J]. 天津师大学报:自然科学版,1996, 16(2): 61-63.]
[13] Gu Hongbiao, Chi Baoming, Li Haijun, et al.Assessment of groundwater quality and identification of contaminant sources of Liujiang Basin in Qinhuangdao, North China[J]. Environmental Earth Sciences,2015,73(10): 6 477-6 493.
[14] Hu Junfeng, Wang Jinsheng, Teng Yanguo, et al.Study progress of interaction between stream and groundwater[J]. Hydrogeology & Engineering Geology, 2004, 31(1): 108-113.
[胡俊锋, 王金生, 滕彦国, 等. 地下水与河水相互作用的研究进展[J]. 水文地质工程地质, 2004, 31(1): 108-113.]
[1] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[2] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[3] 许模,毛邦燕,张强. 现代深部岩溶研究进展与展望[J]. 地球科学进展, 2008, 23(5): 495-500.
[4] 韩贵琳;刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
[5] 马英军,刘丛强. 生态系统营养离子循环及水化学演化的锶同位素示踪[J]. 地球科学进展, 1999, 14(4): 377-383.
[6] 陈拓,秦大河,康兴成,任贾文,侯书贵. 树轮氢、氧同位素研究进展[J]. 地球科学进展, 1998, 13(4): 382-386.
[7] 陈宗宇. 水文地球化学模拟研究的现状[J]. 地球科学进展, 1995, 10(3): 278-282.
阅读次数
全文


摘要