地球科学进展 ›› 2017, Vol. 32 ›› Issue (7): 707 -715. doi: 10.11867/j.issn.1001-8166.2017.07.0707

上一篇    下一篇

秦岭新生代构造隆升与环境效应:进展与问题
王斌 1( ), 常宏 2, 段克勤 1   
  1. 1.陕西师范大学地理科学与旅游学院, 地理国家级实验教学示范中心, 陕西 西安 710119
    2.中国科学院地球环境研究所, 黄土与第四纪地质国家重点实验室, 陕西 西安 710061
  • 收稿日期:2017-02-28 修回日期:2017-06-18 出版日期:2017-07-20
  • 基金资助:
    国家自然科学基金青年科学基金项目“渭河盆地南缘新生界:年代厘定与物源分析”(编号:41602182);中央高校基本科研业务费“渭河盆地晚中新世灞河组碎屑锆石物源示踪研究”(编号:GK201603074)资助

The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains During the Cenozoic Era: Progress and Problems

Bin Wang 1( ), Hong Chang 2, Keqin Duan 1   

  1. 1.National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
    2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
  • Received:2017-02-28 Revised:2017-06-18 Online:2017-07-20 Published:2017-07-20
  • About author:

    First author:Wang Bin(1984-),male,Shangluo City,Shaanxi Province,Assistant Professor. Research areas include Earth surface processes and global change.E-mail:bin.wang@snnu.edu.cn.

  • Supported by:
    Foundation item:Project supported by the National Natural Science Foundation of China “Cenozoic of the southern Weihe Basin: Revising the Cenozoic chronostratigraphy and provenance analysis”(No.41602182);The Fundamental Research Funds for the Central Universities “Detrital zircon and provenance analysis of the Late Miocene Bahe Formation, Weihe Basin”(No.GK201603074)

秦岭东西绵延上千公里,是一座位于我国地理中心部位的雄伟高大山脉,其在地质和地理学研究中均具有非常突出的地位。从地质学角度看秦岭在中国大陆形成和演化过程中具有很重要的位置,其位于华北地块与扬子地块的拼接部位,是中国大陆构造格架的脊梁;在地理学上秦岭又是中国南北方地理分界线,对地理、气候、生态乃至人文环境的南北分异都起着决定作用。前人对秦岭造山带动力学和构造演化进行了大量研究,但多聚焦于古生代早期碰撞和中生代构造演化,而对其新生代以来的构造隆升过程和隆升后所引起的气候环境效应关注较少。对近几十年来开展的围绕秦岭新生代构造隆升和环境效应研究成果进行梳理,指出当前取得的进展及亟待解决的问题,为今后研究提供借鉴。

The Qinling Orogen, a majestic high mountain, is located in the center of China mainland. Qinling Mountains is nearly 2 500 km from the west to the east. It holds a very prominent role not only in the geological but also in the geographical study. In geology, it was built through collision between the North China and South China Blocks. It became the backbone of the tectonic framework of China mainland. In the other way, Qinling is the geographical boundaries in ecological and cultural environment between the northern and the southern China. Many previous studies have dealt with the tectonic system dynamics and structural evolution of Qinling, but most work has focused on the tectonic evolution of the Qinling from the Paleozoic to the Mesozoic. However, the Cenozoic tectonic uplift evolution of Qinling has caused less attention, and little research has been done on the environmental effect of Qinling. And there are still debates about these two questions. The purpose of this paper was to provide an overview of the current studies about the Cenozoic tectonic uplift and its environmental effects of the Qinling Mountains. Finally, this paper pointed out the existing research achievements and the problems to be solved in future research.

中图分类号: 

图1 秦岭造山带及周边主要地质单元 [ 30 , 31 ]
Fig.1 Qinling orogenic belt and the main surrounding geological units [ 30 , 31 ]
图2 秦岭山脉及周边地区DEM
Fig.2 The DEM of Qinling Mountains and its surrounding areas
[1] Molnar P, Tapponnier P.Cenozoic Tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4 201): 419-426.
[2] Tapponnier P, Xu Z, Roger F, et al.Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[3] Yin A.Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1/4): 293-325.
[4] Zachos J, Pagani M, Sloan L, et al.Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
[5] Molnar P, England P.Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
[6] Raymo M, Ruddiman W.Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[7] Willett D.Orogeny and orography: The effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research Solid Earth, 1999, 104(B12): 28 957-28 981.
[8] Zhang P, Molnar P, Downs R.Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6 831): 891-897.
[9] Burbank D, Blythe A, Putkonen J,et al.Decoupling of erosion and precipitation in the Himalayas[J]. Nature, 2003, 426(6 967): 652-655.
[10] Whipple K.The influence of climate on the tectonic evolution of mountain belts[J]. Nature Geoscience, 2009, 2(2): 97-104.
[11] Herman F, Seward D, Valla P, et al.Worldwide acceleration of mountain erosion under a cooling climate[J]. Nature, 2013, 504(7 480): 423-426.
[12] Xue Xiangxu, Zhang Yunxiang, Bi Yan, et al.The Development and Environmental Changes of the Intermontane Basins in the Eastern Part of Qinling Mountain[M]. Beijing: Geological Publishing House, 1996.
[薛祥煦, 张云翔, 毕延, 等. 秦岭东段山间盆地的发育及自然环境变迁[M]. 北京: 地质出版社, 1996.]
[13] Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al.Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 2001.
[张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001.]
[14] Mattauer M, Matte P, Malavieille J, et al.Tectonics of the Qinling Belt: Build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6 037): 496-500.
[15] Peltzer G, Tapponnier P, Zhang Z, et al.Neogene and Quaternary faulting in and along the Qinling Shan[J]. Nature, 1985, 317(6 037): 500-505.
[16] Meng Qingren.Origin of the Qinling Mountains[J]. Scientia Sinica Terrae, 2017, 47(4): 412-420.
[孟庆任. 秦岭的由来[J]. 中国科学: 地球科学, 2017, 47(4): 412-420.]
[17] Xu Zhiqin, Lu Yilun, Tang Yaoqing, et al.Deformation characteristics and tectonic evolution of the Eastern Qinling Orogenic Belt[J]. Acta Geologica Sinica, 1986, 60(3): 237-247.
[许志琴, 卢一伦, 汤耀庆, 等. 东秦岭造山带的变形特征及构造演化[J]. 地质学报, 1986,60(3): 237-247.]
[18] Shaanxi Bureau of Geology and Mineral Resources. Regional Geology of Shaanxi Province[M]. Beijing: Geological Publishing House, 1989.
[陕西地质矿产局. 陕西省区域地质志[M]. 北京: 地质出版社, 1989.]
[19] Shaanxi Province Seismological Bureau. Active Fault Belt in North Margin of the Qinling Mountains[M]. Beijing: Seismological Press,1996.
[陕西省地震局.秦岭北缘活动断裂带[M].北京: 地震出版社, 1996.]
[20] Xue F, Lerch F, Kröner A, et al.Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: A review and new tectonic model[J]. Tectonophysics, 1996, 253(314): 271-284.
[21] Bruguier O, Lancelot J, Malavieille J.U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and Tectonic correlations[J]. Earth and Planetary Science Letters, 1997, 152(1): 217-231.
[22] Meng Q, Zhang G.Geologic framework and tectonic evolution of the Qinling Orogen, central China[J]. Tectonophysics, 2000, 323(3/4): 183-196.
[23] Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al.The 40Ar/39Ar, fission track evidence of Mesozoic tectonic in northern margin of west Qinling Mountain[J]. Acta Petrologica Sinica, 2004, 20(3): 697-706.
[郑德文, 张培震, 万景林, 等. 西秦岭北缘中生代构造活动的40Ar/39Ar、FT热年代学证据[J]. 岩石学报, 2004, 20(3): 697-706.]
[24] Chen Peng, Shi Wei.The Mid-Late Jurassic kinematic model and mechanical mechanism of the ductile shear zones in the south Qinling structural belt[J]. Advances in Earth Science, 2015, 30(1): 69-77.
[陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.]
[25] Dong Y, Zhang G, Neubauer F, et al.Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
[26] Mercier J, Vergely P, Zhang Y, et al.Structural records of the Late Cretaceous-Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi Provinces, PR China)[J]. Tectonophysics, 2013, 582(1): 50-75.
[27] Zhang Y, Ma Y, Yang N, et al.Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics, 2003, 36(5): 591-613.
[28] Sun J.Long-term fluvial archives in the Fenwei Graben, Central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(1): 1 279-1 286.
[29] Enkelmann E, Ratschbacher L, Raymond J, et al.Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. GSA Bulletin, 2006, 118(5/6): 651-671.
[30] Zhang Y, Vergely P, Mercier J.Active faulting in and along the Qinling Eange (China) inferred from SPOT imagery analysis and extrusion tectonics of south China[J]. Tectonophysics, 1995, 243(1): 69-95.
[31] Zhang Y, Mercier J, Vergely P.Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J]. Tectonophysics, 1998, 285(1): 41-75.
[32] Zhang Baosheng.Geomorphology of the Qinling Mountains[J]. Journal of Northwest University (Natural Science Edition), 1981,11(11): 78-84.
[张保升. 秦岭地貌结构[J]. 西北大学学报:自然科学版, 1981,11(11): 78-84.]
[33] Qi Chuhua, Gan Zhimao, Hui Zhende.The main characteristics of the structure geomorphology of East Qinling in Shaanxi[J]. Journal of Shaanxi Normal University (Natural Science Edition), 1982, 10(1): 180-193.
[齐矗华, 甘枝茂, 惠振德. 陕西东秦岭构造地貌基本特征[J]. 陕西师范大学学报:自然科学版, 1982, 10(1): 180-193.
[34] Teng Zhihong, Wang Xiaohong.Studying on the tectonic uplift of the Cenozoic era and the regional environmental effects of the Qinling Orogenic Belt Zone[J]. Geology of Shaanxi, 1996, 14(2): 33-42.
[滕志宏,王晓红. 秦岭造山带新生代构造隆升与区域环境效应研究[J]. 陕西地质, 1996, 14(2): 33-42.]
[35] Xue Xiangxu, Zhang Yunxiang.The uplift stages and amplitudes of the Qinling Mountains by analyzing the distribution and character of the fossils found in the mountains[J]. Geological Review, 1996, 42(1): 30-36.
[薛祥煦, 张云翔. 从生物化石的性质和分布分析秦岭上升的阶段性与幅度[J]. 地质论评, 1996, 42(1): 30-36.]
[36] Liu Hujun.Tectonic uplift of the Cenozoic era in the Qinling era[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2002, 30(1): 121-124.
[刘护军. 秦岭新生代构造隆升研究[J]. 陕西师范大学学报:自然科学版, 2002, 30(1): 121-124.]
[37] Xue Xiangxu, Li Huhou, Li Yongxiang, et al.The new data of the uplifting of Qinling Mountains since the Middle Pleistocene[J]. Quaternary Sciences, 2004, 24(1): 82-87.
[薛祥煦, 李虎侯, 李永项, 等. 秦岭中更新世以来抬升的新资料及认识[J]. 第四纪研究, 2004, 24(1): 82-87.]
[38] Liu J, Zhang P, Lease R, et al.Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe Graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 2013, 584(1): 281-296.
[39] Jia Lanpo, Zhang Yuping, Huang Wanbo, et al.Monograph of the Lantian Cainozoic[M]. Beijing: Science Press, 1966.
[贾兰坡, 张玉萍, 黄万波, 等. 陕西蓝田新生界现场会议论文集[M]. 北京: 科学出版社, 1966.]
[40] Zhang Yuping, Huang Wanbo, Tang Yingjun, et al.Cainozoic of the Lantian Area, Shaanxi[M]. Beijing: Science Press, 1978.
[张玉萍, 黄万波, 汤英俊, 等. 陕西蓝田地区新生界[M]. 北京: 科学出版社, 1978.]
[41] Wang J.The Fenwei rift and its recent periodic activity[J]. Tectonophysics, 1987, 133(3/4): 257-275.
[42] Zhang A, Yang Z, Zhong J, et al.Characteristics of Late Quaternary activity along the southern border fault zone of Weihe Graben Basin[J]. Quaternary International, 1995, 25: 25-31.
[43] Liu S.The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China[J]. Journal of Asian Earth Sciences, 1998,16(4): 369-383.
[44] Xue Xiangxu, Li Wenhou, Liu Linyu.The northward shift of Weihe River and the uplift of Qinling Mountains[J]. Journal of Northwest University (Natural Science Edition), 2002, 32(5): 451-454.
[薛祥煦, 李文厚, 刘林玉. 渭河北迁与秦岭抬升[J]. 西北大学学报:自然科学版, 2002, 32(5): 451-454.]
[45] Liu Hujun.Formation and Evolution of the Weihe River Basin and Uplift of the Eastern Qinling Mountains[D]. Xi’an: Northwest University, 2004.
[刘护军. 渭河盆地的形成演化与东秦岭的隆升[D]. 西安: 西北大学, 2004.]
[46] Liu Shaofeng, Zhang Guowei.Fundamental ideas, contents and methods in study of basin and mountain relationships[J]. Earth Science Frontiers, 2005, 12(3): 101-111.
[刘少峰,张国伟. 盆山关系研究的基本思路、内容和方法[J]. 地学前缘, 2005, 12(3): 101-111.]
[47] Xing Zuoyun, Zhao Bin, Tu Meiyi, et al.The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 2005, 12(2): 247-262.
[邢作云, 赵斌, 涂美义, 等. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 2005, 12(2): 247-262.]
[48] Wang Jianqiang.Mesozoic-Cenozoic Basin Evolution-reforming and Basin-mountain Couping in Southern Ordos Basin[D]. Xi’an: Northwest University, 2010.
[王建强. 鄂尔多斯盆地南部中新生代演化—改造及盆山耦合关系[D]. 西安: 西北大学, 2010.]
[49] Wang Bin, Zheng Hongbo, Wang Ping, et al.The Cenozoic strata and depositional evolution of Weihe Basin: Progresses and problems[J]. Advances in Earth Science, 2013, 28(10): 1 126-1 135.
[王斌, 郑洪波, 王平, 等. 渭河盆地新生代地层与沉积演化研究:现状和问题[J]. 地球科学进展, 2013, 28(10): 1 126-1 135.]
[50] Li Zhichao, Li Wenhou, Li Yongxiang, et al.Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 2015, 17(4): 529-540.
[李智超, 李文厚, 李永项, 等. 渭河盆地新生代沉积相研究[J]. 古地理学报, 2015, 17(4): 529-540.]
[51] Peng Jianbing, Zhang Jun, Su Shengrui, et al.Active Faults and Geological Hazards in Weihe Basin[M]. Xi’an: Northwest University Press, 1992.
[彭建兵, 张骏, 苏生瑞, 等. 渭河盆地活断裂与地质灾害[M]. 西安: 西北大学出版社, 1992.]
[52] Han Hengyue, Mi Fengshou, Liu Haiyun.Geomorphological structure in the Weihe Basin and neotectonic movement[J]. Journal of Seismological Research, 2001, 24(3): 251-257.
[韩恒悦, 米丰收, 刘海云. 渭河盆地地貌结构与新构造运动[J]. 地震研究, 2001, 24(3): 251-257.]
[53] Rao G, Lin A, Yan B, et al.Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, Central China[J]. Tectonophysics, 2014, 638(24): 270-285.
[54] Deng Tao, Wang Xiaoming, Wang Shiqi, et al.Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau[J]. Advances in Earth Science, 2015, 30(4): 407-415.
[邓涛, 王晓鸣, 王世骐, 等. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.]
[55] Stockli F.Application of low-temperature thermochronometry to extensional tectonic settings[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 411-448.
[56] Wan Jinglin, Li Qi, Wang Yu.The fission track evidence of Huashan batholith uplifting in Mesozoic-Cenozoic[J]. Seismology and Geology, 2000, 22(1): 53-58.
[万景林, 李齐, 王瑜. 华山岩体中、新生代抬升的裂变径迹证据[J]. 地震地质, 2000, 22(1): 53-58.]
[57] Yin G, Lu Y, Zhao H, et al.The tectonic uplift of the Hua Shan in the Cenozoic[J]. Chinese Science Bulletin, 2001, 46(19): 1 665-1 668.
[58] Wu Zhonghai, Wu Zhenhan, Wan Jinglin, et al.Cenozoic uplift and denudation history of Huashan Mountains: Evidenced from fission track thermos-chronology of Hushan grantite[J]. Geological Science and Technology Information, 2003, 22(3): 27-32.
[吴中海, 吴珍汉, 万景林, 等. 华山新生代隆升—剥蚀历史的裂变径迹热年代学分析[J]. 地质科技情报, 2003, 22(3): 27-32.]
[59] Ratschbacher L, Hacker R, Calvert A, et al.Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53.
[60] Hu S, Raza A, Min K, et al.Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogeninto the Yangtze craton, Central China[J]. Tectonics, 2006, 25(6):1 029-1 044.
[61] Heberer B, Anzenbacher T, Neubauer F, et al.Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift[J]. Tectonophysics, 2014, 617(4): 31-43.
[62] Wang X, Zattin M, Li J, et al.Cenozoic Tectonic Uplift history of Western Qinling: Evidence from sedimentary and fission-track data[J]. Journal of Earth Science, 2013, 24: 491-505.
[63] Wang F, Li H, Zhu R, et al.Late Quaternary downcutting rates of the Qianyou River from U/Th speleothem dates, Qinling Mountains, China[J]. Quaternary Research, 2004, 62(2): 194-200.
[64] Wang P, Huang Z, Mi N, et al.Crustal structure beneath the Weihe Graben in Central China: Evidence for the tectonic regime transformation in the Cenozoic[J]. Journal of Asian Earth Sciences, 2014, 81(4): 105-114.
[65] Kaakinen A, Lunkka J.Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling Mountains in Shaanxi, China[J]. Journal of Asian Earth Sciences, 2003, 22(1): 67-78.
[66] Wang Z, Zhang P, Garzione C, et al.Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan Plateau, China: Implications for middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44(1): 189-202.
[67] Wang W, Zhang P, Liu C, et al.Pulsed growth of the West Qinling at ~30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance[J]. Journal of Geophysical Research, 2016, doi: 10.1002/2016JB013279.
[68] Gehrels G.Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth & Planetary Sciences, 2014, 42(1): 127-149.
[69] Hacker B, Ratschbacher L, Webb L, et al.U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters,1998, 161(1): 215-230.
[70] Diwu C, Sun Y, Zhang H, et al.Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in Central China: Constraints from detrital zircon U-Pb ages[J]. Journal of Asian Earth Sciences, 2012, 47(1): 107-122.
[71] Darby B, Gehrels G.Detrital zircon reference for the North China block[J]. Journal of Asian Earth Sciences, 2006, 26(6): 637-648.
[72] Lease R, Burbank D, Gehrels G, et al.Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet[J]. Geology, 2007, 35(3): 239-242.
[73] Zheng J, Griffin L, Sun M, et al.Tectonic affinity of the west Qinling terrance (Central China): North China or Yangtze?[J]. Tectonics, 2010,29(2),doi: 10.1029/2008TC002428.
[74] Weislogel A, Graham S, Chang E, et al.Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, Central China: Record of collisional tectonics, erosional exhumation, and sediment production[J]. GSA Bulletin, 2010, 122(1/2): 2 041-2 062.
[75] Wang Z, Liang M, Sun Y, et al.Cenozoic tectonic and geomorphic evolution of the Longxi region in northeastern Tibetan Plateau interpreted from detrital Zircon[J]. Science in China (Series D), 2017, 60(2): 1-12.
[76] Eiler J.“Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
[1] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[2] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[3] 蒋俊霞,杨丽薇,李振朝,高晓清. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
[4] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
[5] 龙花楼, 曲艺, 屠爽爽, 李裕瑞, 戈大专, 张英男, 马历, 王文杰, 王婧. 城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018, 33(5): 455-463.
[6] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[7] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[8] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[9] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[10] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[11] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[12] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[13] 郑洪波, 郭正堂, 邓涛. 新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾翠[J]. 地球科学进展, 2014, 29(11): 1280-1286.
[14] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[15] 丁汝鑫,王利,许长海,周祖翼. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比[J]. 地球科学进展, 2009, 24(8): 942-946.
阅读次数
全文


摘要