地球科学进展 ›› 2017, Vol. 32 ›› Issue (5): 465 -480. doi: 10.11867/j.issn.1001-8166.2017.05.0465

上一篇    下一篇

地球下地幔矿物结构和热力学参数的研究进展与展望
廖一帆( ), 孙宁宇, 毛竹 *( )   
  1. 地震和地球内部物理实验室,地球和空间学学院,中国科学技术大学,安徽 合肥 230026
  • 收稿日期:2016-10-11 修回日期:2017-02-10 出版日期:2017-05-20
  • 通讯作者: 毛竹 E-mail:lyfan123@mail.ustc.edu.cn;zhumao@ustc.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年基金项目“地球物理”(编号:41522403)资助

Recent Advance and Prospects in the Structure and Thermal Elastic Properties of Lower Mantle Minerals

Yifan Liao( ), Ningyu Sun, Zhu Mao *( )   

  1. School of Earth and Space Sciences, University of Science and Techonology of China, Hefei 230026, China
  • Received:2016-10-11 Revised:2017-02-10 Online:2017-05-20 Published:2017-05-20
  • Contact: Zhu Mao E-mail:lyfan123@mail.ustc.edu.cn;zhumao@ustc.edu.cn
  • About author:

    First author:Liao Yifan(1993-), male, Qionglai City, Sichuan Province, Master student. Research areas include physical properties in the Earth interior.E-mail:lyfan123@mail.ustc.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Geophysics”(No.41522403)

下地幔从660 km到2 891 km深度,占据整个地球质量的49.2%并处于极端高温高压的状态。在下地幔相应的温度压力条件下研究主要构成矿物的物理性质,尤其是结构、密度和波速,是理解下地幔结构、物质组成以及动力学过程的关键。通过回顾过去30年高温高压矿物学实验对下地幔矿物,包括布里基曼石、铁方镁石、Ca-钙钛矿以及硅酸盐—后钙钛矿结构和热力学状态方程的重要研究进展,探讨温压条件变化、成分变化以及Fe自旋变化对这些下地幔矿物(相)密度和体波波速的影响,指出现有研究结果的不足和需要解决的问题,并对未来的研究方向提出展望。

Lower mantle, ranging from 660 km to 2 890 km depth, occupies 49.2% of the Earth by mass and is at extremely high pressure and temperature conditions. Experimental studies on the physical properties of the lower mantle minerals, particular the structure, density, and sound velocity, etc., are important to understand the structure, composition, and dynamic behavior of the region. Here we summarize the recent experimental results on the structure and thermal equation of states of the lower mantle minerals, including bridgmanite, ferropericlase, CaSiO3-perovskite, and silicate post-perovskite, and discuss the effect of pressure, temperature, composition, and Fe-spin transition on the density and bulk sound velocity of those minerals. This review aims to provide new insights into the lower-mantle structure and chemistry and help to understand the observed velocity anomalies in the lower mantle.

中图分类号: 

图1 地幔岩物质组成 [ 6 ]
Fig.1 Mantle in a pyrolitic composition [ 6 ]
图2 在常温常压下铁方镁石(Fp)的密度( ρ 0)(a)和等温体积模量( K 0)(b)
(a)密度;(b)等温体积模量;黄色:高自旋Fp [ 21 , 22 , 34 ~ 37 , 39 ];蓝色:低自旋Fp [ 22 , 34 , 36 , 37 ]
Fig.2 Variation in the density ( ρ 0)(a) and isothermal bulk moduli ( K 0)(b) of ferropericlase (Fp) at ambient conditions with various Fe content
(a)Density; (b)Isothermal bulk moduli; Yellow:High spin Fp [ 21 , 22 , 34 ~ 37 , 39 ]; Blue:Low spin Fp [ 22 , 34 , 36 , 37 ]
表1 铁方镁石的热力学参数 *
Table 1 Thermoelastic parameters of ferropericlase *
图3 铁方镁石沿地温曲线 [ 45 ]的密度( ρ)、等温体积模量( K T)和体波波速( V Φ)
(a);(b)密度;(c),(d)等温体积模量;(e),(f)体波波速;红色:含Fe 25 mol.%(Fp25) [ 22 ];蓝色:含Fe 19 mol.%(Fp19) [ 21 ];绿色:MgO [ 17 , 36 ]
Fig.3 Modeled density ( ρ), isothermal bulk moduli( K T), and bulk sound velocity ( V Φ) of ferropericlase along the lower mantle geotherm [ 45 ]
(a),(b)Density;(c),(d)Isothermal bulk moduli;(e),(f)Bulk sound velocity; Red:Fp25 [ 22 ];Blue:Fp19 [ 21 ];Green:MgO [ 17 , 36 ]
图4 常温常压下布里基曼石(Bm)密度( ρ 0)(a)和等温体积模量( K 0)(b)
(a)密度;(b) 等温体积模量;蓝色:不含Al布里基曼石 [ 49 , 66 ~ 71 ];黄色:含Al布里基曼石 [ 49 , 66 ~ 71 ]
Fig.4 Density ( ρ 0)(a) and isothermal bulk moduli ( K 0)(b), of bridgmanite (Bm) at ambient conditions
(a) Density:( ρ 0); (b) Isothermal bulk moduli; Blue: Al-free Bm [ 49 , 66 ~ 71 ]; Yellow:Al-bearing Bm [ 49 , 66 ~ 71 ]
图5 布里基曼石(Bm)沿地温曲线 [ 45 ] 的密度( ρ)、等温体积模量( K T)和体波波速( V Φ)
(a),(b)密度;(c),(d)等温体积模量;(e),(f)体波波速;蓝色:含Fe 13 mol.%(Bm13) [ 74 ];黄色:不含铁 [ 72 , 73 ]
Fig.5 Modeled density ( ρ), isothermal bulk moduli( K T), and bulk sound velocity ( V Φ) of bridgmanite (Bm) along the mantle geotherm [ 45 ]
(a),(b)Density;(c),(d)Isothermal bulk moduli; (e),(f)Bulk sound velocity;Blue:Bm with 13 mol.% Fe(Bm13) [ 74 ];Yellow:Fe-free Bm [ 72 , 73 ]
表2 布里基曼石的热力学参数
Table 2 Thermoelastic Parameters of Bridgmanite
表3 后钙钛矿的弹性参数 *
Table 3 Elastic parameters of Post Perovskite *
图6 常温常压下硅酸盐—后钙钛矿(PPv)的密度( ρ 0)(a)和等温体积模量( K 0)(b)
(a)密度;(b)等温体积模量;蓝色:不含Al硅酸盐—后钙钛矿 [ 79 , 106 ];黄色: 含Al的硅酸盐—后钙钛矿 [ 78 , 105 , 107 ]
Fig.6 Density ( ρ 0)(a) and isothermal bulk moduli ( K 0)(b) of post-perovskite (PPv) at ambient conditions
(a)Density; (b)Isothermal bulk moduli;Blue:Al-free PPv [ 79 , 106 ];Yellow: Al-bearing PPv [ 78 , 105 , 107 ]
图7 硅酸盐—后钙钛矿(PPv)随地温曲线 [ 45 ]的密度( ρ)、等温体积模量( K T)和体波波速( V Φ)
(a),(b)密度;(c),(d)等温体积模量;(e),(f)体波波速;蓝色:不同含铁量的硅酸盐后钙钛矿 [ 79 , 106 , 108 ];橙色:(Fe,Al)-硅酸盐后钙钛矿 [ 20 , 78 , 105 , 108 ];灰色:MgSiO 3-硅酸盐—后钙钛矿 [ 107 ]
Fig.7 Density( ρ), isothermal bulk moduli( K T), and bulk sound velocity ( V Φ) of Post-Perovskite (PPv) along the mantle geotherm [ 45 ]
(a),(b)Density;(c),(d)Isothermal bulk moduli;(e),(f)Bulk sound velocity; Blue: PPv with various Fe content [ 79 , 106 , 108 ]; Orange: PPv with various Fe and Al content [ 20 , 78 , 105 , 108 ]; Gray: MgSiO 3-PPv [ 107 ]
表4 Ca-钙钛矿的热力学参数
Table 4 Thermoelastic Parameters of CaSiO 3 Perovskite
[1] Duffy T S.Some recent advances in understanding the mineralogy of Earth’s deep mantle[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2008, 366(1 883): 4 273-4 293.
[2] Wang X L, Tsuchiya T, Hase A.Computational support for a pyrolitic lower mantle containing ferric iron[J]. Nature Geoscience, 2015,(8): 556-559,doi:10.1038/ngeo2458.
[3] Sun N, Mao Z, Yan S, et al.Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3 perovskite[J]. Journal of Geophysical Research, 2016, 121:4 876-4 894,doi:10.1002/2016JB013062.
[4] Cottaar S, Heister T, Rose I, et al.BurnMan: A lower mantle mineral physics toolkit[J]. Geochemistry Geophysics Geosystems,2014, 15(4): 1 164-1 179.
[5] Zhang S, Cottaar S, Liu T, et al.High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle[J]. Earth and Planetary Science Letters, 2016, 434: 264-273.
[6] Ringwood A E.Composition and Petrology of the Earth’s Mantle[M]. New York: McGraw-Hill, 1975:672.
[7] Murakami M, Hirose K, Kawamura K, et al.Post-perovskite phase transition in MgSiO3[J]. Science,2004, 304(5 672): 855-858.
[8] Oganov A R, Ono S.Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D ″ layer[J]. Nature, 2004, 430(6 998): 445-448.
[9] Mao Z, Lin J F, Scott H P, et al.Iron-rich perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters,2011, 309(3): 179-184.
[10] Mao Z, Lin J F, Yang J, et al.Effects of the Fe3+ spin transition on the equation of state of bridgmanite[J]. Geophysical Research Letters,2015, 42(11): 4 335-4 342.
[11] Murakami M, Ohishi Y, Hirao N, et al.A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data[J]. Nature,2012, 485: 90-118, doi:10.1038/Nature11004.
[12] Murakami M, Sinogeikin S V, Hellwig H, et al.Sound velocity of MgSiO3 perovskite to Mbar pressure[J]. Earth and Planetary Science Letters,2007, 256(1/2): 47-54.
[13] Wu Z Q, Justo J F, Wentzcovitch R M.Elastic anomalies in a spin-crossover system: Ferropericlase at lower mantle conditions[J]. Physical Review Letters,2013, 110, doi:10.1103/Physrevlett.110.228501.
[14] Crowhurst J C, Brown J M, Goncharov A F, et al.Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle[J]. Science, 2008, 319(5 862): 451-453.
[15] Marquardt H, Speziale S, Reichmann H J, et al.Elastic shear anisotropy of ferropericlase in Earth’s lower mantle[J]. Science,2009, 324(5 924): 224-226.
[16] Jayaraman A.Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics, 1983, 55(1): 65-108.
[17] Irifune T, Shinmei T, McCammon C A, et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle[J]. Science,2010, 327: 193-195.
[18] Dobson D P, Brodholt J P.Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary[J]. Nature, 2005, 434(7 031): 371-374.
[19] Hirose K, Fei Y W, Ma Y Z, et al.The fate of subducted basaltic crust in the Earth’s lower mantle[J]. Nature, 1999, 397: 53-56.
[20] Mao W L, Mao H K, Sturhahn W, et al.Iron-rich post-perovskite and the origin of ultralow-velocity zones[J]. Science, 2006, 312: 564-565.
[21] Komabayashi T, Hirose K, Nagaya Y, et al.High-temperature compression of ferropericlase and the effect of temperature on iron spin transition[J]. Earth and Planetary Science Letters, 2010, 297: 691-699.
[22] Mao Z, Lin J F, Liu J, et al.Thermal equation of state of lower-mantle ferropericlase across the spin crossover[J]. Geophysical Research Letters, 2011, 38, doi:10.1029/2011gl049915.
[23] Bengtson A, Li J, Morgan D.Mössbauer modeling to interpret the spin state of iron in (Mg,Fe)SiO3 perovskite[J]. Geophysical Research Letters, 2009, 36, doi:10.1029/2009gl038340.
[24] Hsu H, Blaha P, Cococcioni M, et al.Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite[J]. Physical Review Letters, 2011, 106, doi:10.1103/Physrevlett.106.118501.
[25] Kurashina T, Hirose K, Ono S, et al.Phase transition in Al-bearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle[J]. Physics of the Earth and Planetary Interiors, 2004, 145(1/4): 67-74.
[26] Bovolo C I.The physical and chemical composition of the lower mantle[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2005, 363: 2 811-2 835.
[27] Ono S, Ohishi Y, Mibe K.Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle[J]. American Mineralogist, 2004, 89: 1 480-1 485.
[28] Lakshtanov D L, Sinogeikin S V, Litasov K D, et al.The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13 588-13 590.
[29] Prakapenka V P, Shen G Y, Dubrovinsky L S, et al.High pressure induced phase transformation of SiO2 and GeO2: Difference and similarity[J]. Journal of Physics and Chemistry of Solids, 2004, 65(8/9): 1 537-1 545.
[30] Jackson I, Rigden S M.Analysis of P-V-T data: Constraints on the thermoelastic properties of high-pressure minerals[J]. Physics of the Earth and Planetary Interiors,1996, 96: 85-112.
[31] Jacobsen S D, Reichmann H J, Spetzler H A.et al.Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry[J]. Journal of Geophysical Research-Solid Earth, 2002, 107, doi:10.1029/2001jb000490.
[32] Lin J F, Speziale S, Mao Z, et al. Effects of the electronic spin transitions of iron in lower-mantle minerals: Implications to deep-mantle geophysics and geochemistry[J]. Review in Geophysics, 2013, 51: 2012RG000414.
[33] Badro J, Fiquet G, Guyot F, et al.Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity[J]. Science,2003, 300(5 620): 789-791.
[34] Fei Y W, Zhang L, Corgne A, et al.Spin transition and equations of state of (Mg, Fe)O solid solutions[J]. Geophysical Research Letters, 2007, 34, doi:10.1029/2007gl090712.
[35] Lin J F, Struzhkin V V, Jacobsen S D, et al.Spin transition of iron in magnesiowustite in the Earth’s lower mantle[J]. Nature, 2005, 436: 377-380.
[36] Speziale S, Lee V E, Clark S M, et al.Effects of Fe spin transition on the elasticity of (Mg, Fe) O magnesiowustites and implications for the seismological properties of the Earth’s lower mantle[J]. Journal of Geophysical Research—Solid Earth, 2007, 112, doi:10.1029/2006jb004730.
[37] Chen B, Jackson J M, Sturhahn W, et al.Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa[J]. Journal of Geophysical Research-Solid Earth, 2012, 117, doi: 10.1029/2012jb009162.
[38] Yang J, Tong X Y, Lin J F, et al.Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle[J]. Scientific Reports, 2015, 5, doi:10.1038/Srep17188.
[39] Marquardt H, Speziale S, Reichmann H J, et al.Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa[J]. Earth and Planetary Science Letters, 2009, 287: 345-352.
[40] Jacobsen S D, Spetzler H A, Reichmann H J, et al.Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state[J]. Journal of Physics-Condensed Matter, 2002, 14: 11 525-11 530, doi:10.1088/0953-8984/14/44/510.
[41] Speziale S, Zha C S, Duffy T S, et al.Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state[J]. Journal of Geophysical Research, 2001, 106: 515-528.
[42] Tange Y, Nishihara Y, Tsuchiya T.Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments[J]. Journal of Geophysical Research-Solid Earth, 2009, 114, doi:10.1029/2008jb005813.
[43] Tsuchiya T, Wentzcovitch R M, da Silva C R S, et al. Spin transition in magnesiowustite in earth’s lower mantle[J]. Physical Review Letters, 2006, 96, doi:10.1103/Physrevlett.96.198501.
[44] Wentzcovitch R M, Justo J F, Wu Z, et al.Anomalous compressibility of ferropericlase throughout the iron spin cross-over[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8 447-8 452.
[45] Brown J M, Shankland T J.Thermodynamic parameters in the Earth as determined from seismic profiles[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 66: 579-596.
[46] McCammon C, Hutchison M, Harris J. Ferric iron content of mineral inclusions in diamonds from Sao Luiz: A view into the lower mantle[J]. Science, 1997, 278(5 337): 434-436.
[47] Frost D J, Liebske C, Langenhorst F, et al.Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle[J]. Nature, 2004, 428: 409-412.
[48] Lin J F, Alp E E, Mao Z, et al.Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite[J]. American Mineralogist, 2012, 97(4): 592-597.
[49] Catalli K, Shim S H, Dera P, et al.Effects of the Fe3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities[J]. Earth and Planetary Science Letters,2011, 310: 293-302.
[50] Catalli K, Shim S H, Prakapenka V B, et al.Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties[J]. Earth and Planetary Science Letters,2010, 289(1): 68-75.
[51] Hsu H, Yu Y G, Wentzcovitch R M. Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite[J]. Earth and Planetary Science Letters,2012, 359/360: 34-39.
[52] Badro J, Rueff J P, Vanko G, et al.Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle[J]. Science, 2004, 305: 383-386.
[53] Lin J F, Watson H, Vanko G, et al.Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite[J]. Nature Geoscience,2008, 1(10): 688-691.
[54] McCammon C, Kantor I, Narygina O, et al. Stable intermediate-spin ferrous iron in lower-mantle perovskite[J]. Nature Geoscience, 2008, 1(10): 684-687.
[55] Jackson J M, Sturhahn W, Shen G Y, et al.A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa[J]. American Mineralogist, 2005, 90(1): 199-205.
[56] Li J, Sturhahn W, Jackson J M, et al.Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O3 perovskite: A combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa[J]. Physics and Chemistry of Minerals, 2006, 33(8/9): 575-585.
[57] Narygina O V, Kantor I Y, McCammon C A., et al. Electronic state of Fe2+ in (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)SiO3 majorite at pressures up to 81 GPa and temperatures up to 800 K[J]. Physics and Chemistry of Minerals, 2010, 37(6): 407-415.
[58] Potapkin V, McCammon C, Glazyrin K, et al. Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle[J]. Nature Communications, 2013, 4, doi:10.1038/Ncomms2436.
[59] McCammon C, Dubrovinsky L, Narygina O, et al. Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle[J]. Physics of the Earth and Planetary Interiors, 2010, 180(3): 215-221.
[60] Hsu H, Umemoto K, Blaha P, et al.Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure[J]. Earth and Planetary Science Letters, 2010, 294(1): 19-26.
[61] Hsu H, Wentzcovitch R M.First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle[J]. Physical Review B, 2014, 90, doi:10.1103/Physrevb.90.195205.
[62] Li J, Struzhkin V V, Mao H K, et al.Electronic spin state of iron in lower mantle perovskite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14 027-14 030.
[63] Mao Z, Lin J F, Yang J, et al.Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mössbauer and X-ray emission spectroscopy[J]. American Mineralogist, 2014, 99: 415-423.
[64] Dorfman S M, Badro J, Rueff J P, et al.Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite[J]. American Mineralogist, 2015, 100(10): 2 246-2 253.
[65] Lin J F, Mao Z, Yang J, et al.High-spin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower mantle[J]. Geophysical Research Letters, 2016, 10, doi:10.1002/2016GL069836.
[66] Mao Z, Wang F, Lin J F, et al.Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy[J]. American Mineralogist, 2017, 102(2): 357-368.
[67] Andrault D, Bolfan-Casanova N, Guignot N.Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 501-508.
[68] Ballaran T B, Kurnosov A, Glazyrin K, et al.Effect of chemistry on the compressibility of silicate perovskite in the lower mantle[J]. Earth and Planetary Science Letters, 2012, 333: 181-190.
[69] Glazyrin K, Ballaran T B, Frost D J, et al.Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle[J]. Earth and Planetary Science Letters, 2014, 393: 182-186.
[70] Nishio-Hamane D, Seto Y, Fujino K, et al.Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite[J]. Physics of the Earth and Planetary Interiors, 2008, 166(3): 219-225.
[71] Saikia A, Ballaran T B, Frost D J.The effect of Fe and Al substitution on the compressibility of MgSiO3-perovskite determined through single-crystal X-ray diffraction[J]. Physics of the Earth and Planetary Interiors, 2009, 173: 153-161.
[72] Fiquet G, Dewaele A, Andrault D, et al.Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions[J]. Geophysical Research Letters, 2000, 27: 21-24.
[73] Tange Y, Kuwayama Y, Irifune T, et al.P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle[J]. Journal of Geophysical Research, 2012, 117, doi:10.1029/2011jb008988.
[74] Wolf A S, Jackson J M, Dera P, et al.The thermal equation of state of (Mg, Fe)SiO3 bridgmanite (perovskite) and implications for lower mantle structures[J]. Journal of Geophysical Research-Solid Earth, 2015, 120(11): 7 460-7 489.
[75] Tsuchiya T, Tsuchiya J, Umemoto K, et al.Phase transition in MgSiO3 perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters,2004, 224: 241-248.
[76] Miyagi L, Kanitpanyacharoen W, Kaercher P, et al.Slip systems in MgSiO3 post-perovskite: Implications for D ″Anisotropy[J]. Science, 2010, 329(5 999): 1 639-1 641.
[77] Hirose K.Postperovskite phase transition and its geophysical implications[J]. Reviews of Geophysics, 2006, 44, doi:10.1029/2005rg000186.
[78] Shieh S R, Dorfman S M, Kubo A, et al.Synthesis and equation of state of post-perovskites in the (Mg,Fe)3Al2Si3O12 system[J]. Earth and Planetary Science Letters, 2011, 312: 422-428, doi:10.1016/j.epsl.2011.09.054.
[79] Shieh S R, Duffy T S, Kubo A, et al.Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9): 3 039-3 043.
[80] Murakami M, Sinogeikin S V, Bass J D, et al.Sound velocity of MgSiO3 post-perovskite phase: A constraint on the D" discontinuity[J]. Earth and Planetary Science Letters, 2007, 259(1/2): 18-23.
[81] van der Hilst R D, de Hoop M V, Wang P, et al. Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region[J]. Science, 2007, 315(5 820): 1 813-1 817.
[82] Hernlund J W, Thomas C, Tackley P J.A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle[J]. Nature, 2005, 434: 882-886.
[83] Murakami M, Hirose K, Sata N, et al.Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle[J]. Geophysical Research Letters, 2005, 32, doi:10.1029/2004gl021956.
[84] Ono S,Oganov A R.In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition[J]. Earth and Planetary Science Letters, 2005, 236: 914-932.
[85] Grocholski B, Catalli K, Shim S H, et al.Mineralogical effects on the detectability of the postperovskite boundary[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2 275-2 279.
[86] Catalli K, Shim S H, Prakapenka V.Thickness and Clapeyron slope of the post-perovskite boundary[J]. Nature, 2009, 462: 782-785, doi:Doi 10.1038/Nature08598.
[87] Ohta K, Hirose K, Lay T, et al.Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core-mantle boundary[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 107-117.
[88] Tsuchiya J, Tsuchiya T.Postperovskite phase equilibria in the MgSiO3-Al2O3 system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19 160-19 164.
[89] Akber-Knutson S, Steinle-Neumann G, Asimow P D.Effect of Al on the sharpness of the MgSiO3 perovskite to post-perovskite phase transition[J]. Geophysical Research Letters, 2005, 32, doi:10.1029/2005gl023192.
[90] Tateno S, Hirose K, Sata N, et al.Phase relations in Mg3Al2Si3O12 to 180 GPa: Effect of Al on post-perovskite phase transition[J]. Geophysical Research Letters, 2005, 32, doi:10.1029/2005gl023309.
[91] Dorfman S M, Shieh S R, Meng Y, et al.Synthesis and equation of state of perovskites in the (Mg, Fe)3Al2Si3O12 system to 177 GPa[J]. Earth and Planetary Science Letters, 2012, 357: 194-202.
[92] Tateno S, Hirose K, Sata N, et al.Solubility of FeO in (Mg,Fe)SiO3 perovskite and the post-perovskite phase transition[J]. Physics of the Earth and Planetary Interiors, 2007, 160(3/4): 319-325.
[93] Hirose K, Sinmyo R, Sata N, et al.Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards[J]. Geophysical Research Letters, 2006, 33, doi:10.1029/2005gl024468.
[94] Tateno S, Hirose K, Sata N, et al.Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″layer[J]. Earth and Planetary Science Letters, 2009, 277: 130-136.
[95] Holmes N C, Moriarty J A, Gathers G R, et al.The equation of state of platinum to 660 GPa (6.6 Mbar)[J]. Journal of Applied Physics, 1989, 66: 2 962-2 967.
[96] Tsuchiya T. First-principles prediction of the PVT equation of state of gold and the 660-km discontinuity in Earth’s mantle[J]. Journal of geophysical research, 2003, 108(B10): ECV1.1-ECV1.9.
[97] Mao W L, Shen G Y, Prakapenka V B, et al.Ferromagnesian postperovskite silicates in the D’ layer of the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(45): 15 867-15 869.
[98] Caracas R, Cohen R E.Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle[J].Geophysical Research Letters, 2005, 32, doi:10.1029/2005gl023164.
[99] Stackhouse S, Brodholt J P, Price G D.Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases[J]. Geophysical Research Letters,2006, 33, doi:10.1029/2005gl023887.
[100] Hirose K, Wentzcovitch R, Yuen D, et al.Mineralogy of the deep mantle-The post-perovskite phase and its geophysical significance[M]∥Schubert G, ed. Treatise on Geophysics (Second Edition). Oxford: Elsevier, 2015.
[101] Sinmyo R, Hirose K, Muto S, et al.The valence state and partitioning of iron in the Earth’s lowermost mantle[J]. Journal of Geophysical Research-Solid Earth, 2011, 116, doi:10.1029/2010jb008179.
[102] Mao Z, Lin J F, Jacobs C, et al.Electronic spin and valence states of Fe in CaIrO3-type silicate post-perovskite in the Earth’s lowermost mantle[J]. Geophysical Research Letters, 2010, 37, doi:10.1029/2010gl045021.
[103] Catalli K, Shim S H, Prakapenka V B, et al.X-ray diffraction and Mossbauer spectroscopy of Fe3+-bearing Mg-silicate post-perovskite at 128-138 GPa[J]. American Mineralogist,2010, 95: 418-421, doi:10.2138/Am.2010.3352.
[104] Yu Y G G, Hsu H, Cococcioni M, et al. Spin states and hyperfine interactions of iron incorporated in MgSiO3 post-perovskite[J]. Earth and Planetary Science Letters, 2012, 331/332: 1-7.
[105] Mao Z, Lin J F, Yang J, et al.(Fe, Al)-bearing post-perovskite in the Earth’s lower mantle[J]. Earth and Planetary Science Letters,2014, 403: 157-165.
[106] Shim S H.The postperovskite transition[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 569-599.
[107] Ono S, Kikegawa T, Ohishi Y.Equation of state of CaIrO3-type MgSiO3 up to 144 GPa[J]. American Mineralogist, 2006, 91: 475-478.
[108] Nishio-Hamane D, Yagi T.Equations of state for postperovskite phases in the MgSiO3-FeSiO3-FeAlO3 system[J]. Physics of the Earth and Planetary Interiors, 2009, 175: 145-150.
[109] Funamori N, Jeanloz R, Miyajima N, et al.Mineral assemblages of basalt in the lower mantle[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B11): 26 037-26 043.
[110] Kesson S E, Fitz Gerald J D, Shelley J M. G. Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures[J]. Nature,1994, 372: 767-769.
[111] Litasov K D, Ohtani E, Kagi H, et al.Hydrogen solubility in Al-rich stishovite and water transport to the lower mantle[J]. Geochimica et Cosmochimica Acta,2006, 70: A362-A362, doi:10.1016/j.gca.2006.06.732.
[112] Caracas R, Wentzcovitch R M.Theoretical determination of the structures of CaSiO3 perovskites[J]. Acta Crystallographica Section B-Structural Science,2006, 62: 1 025-1 030.
[113] Jung D Y, Oganov A R.Ab initio study of the high-pressure behavior of CaSiO3 perovskite[J]. Physics and Chemistry of Minerals, 2005, 32(2): 146-153.
[114] Stixrude L, Lithgow-Bertelloni C, Kiefer B, et al.Phase stability and shear softening in CaSiO3 perovskite at high pressure[J]. Physical Review B, 2007, 75, doi:10.1103/Physrevb.75.024108.
[115] Tamai H, Yagi T.High-pressure and high-temperature phase-relations in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3[J]. Physics of the Earth and Planetary Interiors,1989, 54: 370-377.
[116] Shim S H, Duffy T S, Shen G Y.The stability and P-V-T equation of state of CaSiO3 perovskite in the Earth’s lower mantle[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B11): 25 955-25 968.
[117] Noguchi M, Komabayashi T, Hirose K.et al.High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state[J].Physics and Chemistry of Minerals, 2013, 40: 81-91.
[118] Adams D J, Oganov A R.Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions of Earth’s lower mantle[J]. Physical Review B, 2006, 73, doi:10.1103/PhysRevB.73.184106.
[119] Wang Y B, Weidner D J, Guyot F.Thermal equation of state of CaSiO3 perovskite[J]. Journal of Geophysical Research-Solid Earth, 1996, 101: 661-672.
[120] Zhang Y G, Zhao D P, Matsui M.et al.Equations of state of CaSiO3 Perovskite: A molecular dynamics study[J]. Physics and Chemistry of Minerals, 2006, 33: 126-137.
[121] Kawai K, Tsuchiya T.P-V-T equation of state of cubic CaSiO3 perovskite from first-principles computation[J]. Journal of Geophysical Research-Solid Earth, 2014, 119: 2 801-2 809.
[122] Hirose K.Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle[J]. Journal of Geophysical Research-Solid Earth, 2002, 107, doi:10.1029/2001jb000597.
[123] Kesson S E, Fitz Gerald J D, Shelley J M. Mineralogy and dynamics of a pyrolite lower mantle[J]. Nature, 1998, 393: 252-255.
[124] Irifune T, Ringwood A E.Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle[J]. Earth and Planetary Science Letters, 1993, 117: 101-110.
[125] Ono S, Ito E, Katsura T.Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle[J]. Earth and Planetary Science Letters, 2001, 190: 57-63.
[126] Yusa H, Yagi T, Shimobayashi N.A new unquenchable high-pressure polymorph of Ca3Al2Si3O12[J]. Physics of the Earth and Planetary Interiors, 1995, 92: 25-31.
[127] Sinogeikin S V, Zhang J Z, Bass J D Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy[J]. Geophysical Research Letters, 2004, 31, doi:10.1029/2004gl019559.
[128] Fei Y, Ricolleau A, Frank M, et al.Toward an internally consistent pressure scale[J]. Proceedings of the National Academy of Sciences, 2007, 104(22): 9 182-9 186.
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[3] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[4] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[5] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[6] 陆大道. 地理国情与国家战略[J]. 地球科学进展, 2020, 35(3): 221-230.
[7] 葛玉娟,赵宇鸾,任红玉. 山区耕地细碎化对不同利用方式农地集约度的影响[J]. 地球科学进展, 2020, 35(2): 180-188.
[8] 张菁,路紫,杜欣儒,杜晓辉,高玉健. 京津石多机场系统航空流运行结构及其对比研究[J]. 地球科学进展, 2020, 35(12): 1281-1291.
[9] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[10] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[11] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[12] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[13] 吴成平,于长春,王卫平,马勋表,范正国,朱宏伟. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10): 1099-1107.
[14] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[15] 王凡, 刘传玉, 胡石建, 高山, 贾凡, 张林林, 汪嘉宁, 冯俊乔. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33(8): 775-782.
阅读次数
全文


摘要