地球科学进展 ›› 2017, Vol. 32 ›› Issue (2): 199 -208. doi: 10.11867/j.issn.1001-8166.2017.02.0199

上一篇    下一篇

铀在海相烃源岩中富集的条件及主控因素
蔡郁文 1, 2, 3( ), 王华建 2, 3, 王晓梅 2, 3, 何坤 2, 3, 张水昌 2, 3, 吴朝东 1   
  1. 1.北京大学地球科学与空间科学学院,北京 100871
    2.中国石油天然气股份有限公司油气地球化学重点实验室,北京 100083
    3.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2016-10-20 修回日期:2017-01-02 出版日期:2017-02-20
  • 基金资助:
    国家自然科学基金重点项目“中国元古代海相烃源岩形成的生物、海洋和地质因素及耦合关系研究”(编号:41530317);国家自然科学基金青年科学基金项目“铀的放射性作用对有机质成熟和生烃的影响”(编号:41602144)资助

Formation Conditions and Main Controlling Factors of Uranium in Marine Source Rocks

Yuwen Cai 1, 2, 3( ), Huajian Wang 2, 3, Xiaomei Wang 2, 3, Kun He 2, 3, Shuichang Zhang 2, 3, Chaodong Wu 1   

  1. 1.School of Earth and Space Sciences, Peking University,Beijing 100083,China
    2.Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation,Beijing 100083,China
    3.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2016-10-20 Revised:2017-01-02 Online:2017-02-20 Published:2017-02-20
  • About author:

    First author:Cai Yuwen(1989-), female, Daqing City, Heilongjiang Province, Ph. D student. Research areas include petroleum geochemistry.E-mail:caiyuwen1@aliyun.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Influences of biology, ocean and geology in the formation of marine source rocks and their coupling relationships”(No.41530317);The Young Scientists Fund of the National Natural Science Foundation of China “Effects of radioactivity of uranium on organic matter maturation and hydrocarbon generation”(No.41602144)

国内外沉积盆地中铀的富集不同程度地伴随烃源岩的形成。铀作为一种兼具催化、氧化和放射性的特殊元素, 其对有机矿产的形成及演化可能具有重要的促进作用,通过调查并统计国内外烃源岩中铀含量,在分析铀与各类矿物、有机质及微生物等相互作用的基础上, 讨论了铀在海相烃源岩中的富集条件及主控因素, 提出古大气和古海洋的氧化程度是烃源岩中铀富集的主要控制因素, 陆地含氧风化和海底热液可能是海相沉积铀的2个主要来源,含铁矿物组成、有机质、磷酸盐矿物、黏土矿物及一些微生物等均可导致铀价态转化, 并作为载体, 通过吸附或络合作用使铀在沉积物中富集。因此, 铀富集可能是烃源岩形成的一个伴随结果。

The research of petroleum exploration demonstrates that source rocks, developed in petroleum-bearing sedimentary basins worldwide, are accompanied by uranium to different degrees.As a special element with catalytic, oxidative and radioactive features, uranium may play important roles in the source rock formation and hydrocarbon generation. In this paper, we systematically discussed the formation conditions and main controlling factors of uranium in marine source rocks based on the comprehensive analysis of uranium contents in the worldwide source rocks and the interactions of uranium with minerals, organic materials and microbes. The results indicated that oxidative degrees of ancient atmosphere and palaeo-ocean were governing factors of uranium enrichment in source rocks. Oxidative weathering and hydrothermal solution might be the two main sources of marine sedimentary uranium. In addition, iron-bearing minerals, phosphate minerals, clay minerals, organic materials, and microbes were of great significance in promoting the transformation of the uranium valence states. They could also act as carriers to absorb or combine uranium, resulting in the enrichment of uranium in sediments. Therefore, the enrichment of uranium might be an inevitable result of source rocks formation.

中图分类号: 

图1 地史时期沉积物中的铀和有机质含量及大气氧化进程(修改并补充自参考文献[13,17~22])
图中阴影为碳酸盐岩中碳同位素的变化 [ 23 ]
Fig.1 U and TOC contents in organic-rich shales, and the atmospheric oxidation process through geological time(modified and supplemented after references[13,17~22])
Gray-band: Inorganic carbon isotope composition of carbonates [ 23 ]
表1 国内不同时期烃源岩中的TOC,U,Fe,Al,P含量及比值
Table 1 TOC, U, Fe, Al, P content and ratios in organic shales through time
图2 铀在磁铁矿表面的还原沉淀 [ 39 ]
Fig.2 Model illustrating remediation of uranium at magnetite surfaces by reductive precipitation [ 39 ]
表2 沉积物中铀富集条件及赋存状态
Table 2 Enrichment and occurrence of uranium in sediments
[1] Fu Jin, Zhao Ningbo, Pei Chengkai,et al.Indicator chiaracteristics of elementary geochiemistry and anomaly model for Chinese carbonaceous-siliceous-argillaceous rock type uranium deposit[J]. Uranium Geology, 2014, 30(5): 298-304.
[付锦, 赵宁博, 裴承凯,等.中国碳硅泥岩型铀矿地球化学指示元素特征及异常模式[J]. 铀矿地质, 2014, 30(5): 298-304.]
[2] Zhong Fujun, Pan Jiayong, Wang Kaixing,et al.The prediction model of Chinese carbonaceous-siliceous-argillaceous rock type uranium deposit[J]. Acta Mineralogica Sinica, 2015,(Suppl.1):372-373.
[钟福军, 潘家永, 王凯兴,等.我国碳硅泥岩型铀矿床找矿预测模型[J]. 矿物学报, 2015,(增刊1):372-373.]
[3] Huang Jingbai, Huang Shijie.Regional metallogenic characteristics of China’s uranium resources[J].Uranium Geology, 2005, 21(3): 129-138.
[黄净白, 黄世杰. 中国铀资源区域成矿特征[J]. 铀矿地质, 2005, 21(3): 129-138.]
[4] Doveton J H, Merriam D F.Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface[J].Chemical Geology, 2004, 206(3/4): 249-258.
[5] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J].Chemical Geology, 2009, 260(1/2): 1-19.
[6] Liu An, Li Xubing, Wang Chuanshang, et al.Analysis of geochemical feature and sediment environment forhydrocarbon source rocks of cambrian in west Hunan-Hubei area[J]. Acta Sedimentologica Sinica, 2013, 31(6):1 122-1 132.
[刘安, 李旭兵, 王传尚, 等. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J].沉积学报, 2013, 31(6):1 122-1 132.]
[7] Zhang Benhao.The Geochemistry Characteristics and the Occurrence Reason of the U-rich Source Rocks in Chang 7 Memeber of Yanchang Formation, Ordos Basin[D]. Xi’an: Northwest University, 2011.
[张本浩. 鄂尔多斯盆地延长组长7烃源岩铀富集的地质地球化学特征及其成因探讨[D]. 西安:西北大学, 2011.]
[8] Zhang Yige.Well Logging Evaluation and Identification of Shale Gas in Changning, Sichuan[D]. Chengdu: Southwest Petroleum University, 2014.
[张译戈. 长宁地区页岩气测井精细解释方法研究[D]. 成都:西南石油大学, 2014.]
[9] Liu Chiyang, Mao Guangzhou, Qiu Xinwei,et al.Organic-inorganic energy minerals interactions and the accumulation and mineralization in the same sedimentary basins[J].Chinese Journal of Nature, 2013, 35(1): 47-55.
[刘池阳,毛光周,邱欣卫, 等. 有机—无机能源矿产相互作用及其共存成藏(矿)[J]. 自然杂志, 2013, 35(1): 47-55.]
[10] Mao Guangzhou.Effects of Uranium on the Hydrocarbon Generaton of Hydrocarbon Source Rocks[D]. Xi’an: Northwest University, 2009.
[毛光周. 铀对烃源岩生烃演化的影响[D]. 西安:西北大学, 2009.]
[11] Xu Guocang, Zhang Dehua, Zhang Hongjian.The feasibility and prospect of joint exploration and development for uranium and gas in black rock series[J].Uranium Geology,2015,31(1): 36-43.
[徐国苍, 张德华, 张红建. 黑色岩系铀气共探可行性及勘探开发前景[J]. 铀矿地质, 2015, 31(1): 36-43.]
[12] Cai Yuqi, Zhang Jindai, Li Ziying,et al.Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica,2015,89(6): 1 051-1 069.
[蔡煜琦,张金带,李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1 051-1 069.]
[13] Partin C, Bekker A, Planansky N,et al. Large-scale fluctuations in precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369/370: 284-293,doi:10.1016/j.epsl.2013.03.031.
[14] Kalin M, Wheeler W, Mernrath G.The removal of uranium from mining waste water using algal/microbial biomass[J].Journal of Environmental Radioactivity, 2004, 78(2): 151-177.
[15] Tribovillard N, Algeo T J, Lyons T,et al.Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1): 12-32.
[16] Dunk R, Mills R, Jenkins W.A reevaluation of the oceanic uranium budget for the Holocene[J].Chemical Geology, 2002, 190(1): 45-67.
[17] Sahoo S K, Plankansky N J, Kendall B,et al.Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7 417): 546-549.
[18] Carbral A R, Creaser R A, Nägler T,et al.Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil[J]. Chemical Geology, 2013, 362: 91-104,doi:10.1016/j.chemgeo.2013.08.041.
[19] Guo Qingjun, Shields G A, Liu Congqiang,et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1): 194-216.
[20] Pi Daohui, Liu Congqiang, Shields-Zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metals[J].Preca Mbrian Research, 2013, 225(1): 218-229.
[21] Leventhal J.Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991, 26(2): 104-112.
[22] Yu Bingsong, Dong Hailiang, Widom E,et al.Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
[23] Craig J, Biffi U, Galimberti R F,et al.The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40(1): 1-47.
[24] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J].Chemical Geology, 2012, 324/325:6-18,doi:10.1016/j.chemgeo.2011.09.002.
[25] Condie K C.Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J].Chemical Geology, 1993, 104(1): 1-37.
[26] Lyons T W, Reinhard C T, Plankansky N J.The rise of oxygen in Earth’s early ocean and atmosphere[J].Nature, 2014, 506(7 488): 307-315.
[27] Plankansky N J, Asasel D, Hoffmann A,et al.Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4): 283-286.
[28] Candield D E.The early history of atmospheric oxygen: Homage to Robert M. Garrels[J].Annual Review of Earth and Planetary Sciences, 2005, 33(1): 1-36.
[29] Holland H D.The oxygenation of the atmosphere and oceans[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470): 903-915.
[30] Plankansky N J, Reinhard C T, Wang X,et al.Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6 209): 635-638.
[31] Jiao Nianzhi, Li Chao, Wang Xiaoxue, et al.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7):668-681.
[焦念志, 李超, 王晓雪,等.海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展,2016, 31(7): 668-681.]
[32] Zhang Shuichang, Wang Xiaomei, Wang Huajian,et al.Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113(7):1 731-1 736.
[33] Grosjean E, Love G, Stalvies C,et al.Origin of petroleum in the Neoproterozoic-Cambrian South Oman salt basin[J]. Organic Geochemistry, 2009, 40(1): 87-110.
[34] Veevers J.Gondwanaland from 650-500 Ma assembly through 320Ma merger in Pangea to 185-100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating[J].Earth-Science Reviews, 2004, 68(1): 1-132.
[35] Large R R, Halpin J A, Lounejeva E,et al.Cycles of nutrient trace elements in the Phanerozoic ocean[J]. Gondwana Research, 2015, 28(4): 1 282-1 293.
[36] Sleep N H.Hotspots and mantle plumes: Some phenomenology[J].Journal of Geophysical Research: Solid Earth, 1990, 95(B5): 6 715-6 736.
[37] Li Yanfang, Lü Haigang, Zhang Yu, et al.U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 36(2): 109-116.
[李艳芳, 吕海刚, 张瑜,等.四川盆地五峰组—龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学, 2015, 36(2): 109-116.]
[38] Yang H, Zhang W, Wu K, et al.Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293.
[39] Karhu J A, Holland H D.Carbon isotopes and rise of atmospheric oxygen[J]. Geology, 1996, 24(10):867-870.
[40] Scott T, Allen G, Heard P,et al.Reduction of U(VI) to U(IV) on the surface of magnetite[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5 639-5 646.
[41] Massey M S, Lezama-Pacheco J S, Jones M E,et al. Competing retention pathways of uranium upon reaction with Fe(II)[J]. Geochimica et Cosmochimica Acta, 2014, 142(1): 166-185.
[42] Algeo T J, Maynard J B.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology, 2004, 206(3): 289-318.
[43] Zheng Y, Anderson R F, Van Geen A,et al.Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(17): 3 085-3 092.
[44] Xiang Weidong, Chen Zhaobo, Chen Zuyi,et al.Discussion on relationship between organic matter and metallogenesis of epigenetic sandstone type uranium deposits: Take Shihongtan district in Turpan-Hami Basin as an example[J].Uranium Geology, 2000, 16(2): 65-73.
[向伟东,陈肇博,陈祖伊,等. 试论有机质与后生砂岩型铀矿成矿作用——以吐哈盆地十红滩地区为例[J]. 铀矿地质, 2000, 16(2): 65-73.]
[45] Bonnettic C, Cuney M, Malartre F,et al.The Nuheting deposit, Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization[J]. Ore Geology Reviews, 2015, 69: 118-139,doi:10.1016/j.oregeorev.2015.02.010.
[46] Idiz E F, Carlisle D, Kaplan I.Interaction between organic matter and trace metals in a uranium rich bog, Kern County, California, USA[J].Applied Geochemistry, 1986, 1(5): 573-590.
[47] Manning G S.Limiting laws and counterion condensation in polyelectrolyte solutions: IV. The approach to the limit and the extraordinary stability of the charge fraction[J].Biophysical Chemistry, 1977, 7(2): 95-102.
[48] Fisher Q, Wignall P.Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata, England[J].Chemical Geology, 2001, 175(3): 605-621.
[49] Havelcov M, Machovi V, Mizera J,et al.A multi-instrumental geochemical study of anomalous uranium enrichment in coal[J]. Journal of Environmental Radioactivity, 2014, 137:52-63,doi:10.1016/j.jevrad.2014.06.015.
[50] Zhang Benhao, Wu Bailin, Liu Chiyang,et al.Occurrence of Uranium in hydrocarbon of Chang 7 Member of Yanchang Formation of Ordos Basin[J].Northwestern Geology, 2011, 44(2): 124-132.
[张本浩,吴柏林,刘池阳,等. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态[J]. 西北地质, 2011, 44(2): 124-132.]
[51] Grenthe I, Wanner H, Forest I.Chemical Thermodynamics of Uranium[M].Amsterdam: North-Holland, 1992.
[52] Kohler M, Curtis G P, Meece D E,et al.Methods for estimating adsorbed Uranium (VI) and distribution coefficients of contaminated sediments[J]. Environmental Science & Technology, 2004, 38(1): 240-247.
[53] Cheng T, Barnett M O, Roden E E,et al.Effects of phosphate on Uranium (VI) adsorption to goethite-coated sand[J]. Environmental Science & Technology, 2004, 38(22): 6 059-6 065.
[54] Huang Jitai.Resarch on the structural characteristics of clay minerals and their applications[J].Chinese Journal of Structural Chemistry, 1996, 15(6): 438-443.
[黄继泰. 黏土矿物的结构特征及其应用研究[J]. 结构化学, 1996, 15(6): 438-443.]
[55] Tsunashima A, Brindley G, Bastovanov M.Adsorption of uranium from solutions by montmorillonite: Compositions and properties of uranyl montmorillonites[J].Clays and Clay Minerals, 1981, 29(1): 10-16.
[56] Joseph C, Stochkmann M, Schmeide K,et al.Sorption of U(VI) onto Opalinus clay: Effects of pH and humic acid[J]. Applied Geochemistry, 2013, 36(3): 104-117.
[57] Reguera G, Mccarthy K D, Mehta T,et al.Extracellular electron transfer via microbial nanowires[J]. Nature,2005, 435(7 045): 1 098-1 101.
[58] Lovley D R, Phillips E J, Gorby Y A, et al.Microbial reduction of uranium[J].Nature, 1991, 350(6 317): 413-416.
[59] Wang Ying, Liu Tongxu, Li Fangbai.Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral Interface[J]. Advances in Earth Science, 2016, 31(4): 347-356.
[王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展 2016, 31(4): 347-356.]
[60] Scholz F, Hensen C, Noffke A, et al.Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—Response to ENSO-related oxygen fluctuations in the water column[J].Geochimica et Cosmochimica Acta, 2011, 75(22): 7 257-7 276.
[61] Algeo T J, Tribovillard N.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology, 2009, 268(3): 211-225.
[62] Zheng Y, Anderson R F, van Geen A, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J]. Geochimica et Cosmochimica Acta, 2002, 66(10): 1 759-1 772.
[63] Shen Ping, Zhu Huiying, Xu Yongchang.Distribituional features of uranium, thorium and potassium in the sedimentary rocks[J].Acta Sedimentologica Sinica, 1983, 1(3): 109-122.
[沈平, 朱慧应, 徐永昌. 沉积岩中铀、钍、钾与区域地温状态的关系[J]. 沉积学报, 1983, 1(3): 109-122.]
[1] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[2] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北五峰—龙马溪组层序地层特征及有机质富集探讨——以 XY-3井为例[J]. 地球科学进展, 2021, 36(10): 1026-1038.
[3] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[4] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[5] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[6] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[7] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[8] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[9] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[10] 张克存, 屈建军, 鱼燕萍, 韩庆杰, 王涛, 安志山, 胡菲. 中国铁路风沙防治的研究进展[J]. 地球科学进展, 2019, 34(6): 573-583.
[11] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[12] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[13] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[14] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[15] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
阅读次数
全文


摘要