地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 56 -65. doi: 10.11867/j.issn.1001-8166.2017.01.0056

上一篇    下一篇

黏性岩土的化学渗透效应及其研究进展
孙晓敏( ), 吴剑锋 *( )   
  1. 南京大学地球科学与工程学院表生地球化学教育部重点实验室,江苏 南京 210023
  • 收稿日期:2016-07-09 修回日期:2016-12-02 出版日期:2017-01-20
  • 通讯作者: 吴剑锋 E-mail:sxm.0213@gmail.com;jfwu@nju.edu.cn
  • 基金资助:
    *国家自然科学基金项目“华北平原典型区咸水下移机理及数值模拟研究”(编号:41372235)资助.

Review on Advances in Chemical Osmosis in Clayey Sediments

Xiaomin Sun( ), Jianfeng Wu *( )   

  1. Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2016-07-09 Revised:2016-12-02 Online:2017-01-20 Published:2017-01-10
  • Contact: Jianfeng Wu E-mail:sxm.0213@gmail.com;jfwu@nju.edu.cn
  • About author:

    First author:Sun Xiaomin (1986-), male, Tongliao City, Inner Mongolia, Ph.D student. Research areas include coupled flow phenomenon in clayey sediment.E-mail:sxm.0213@gmail.com

    *Corresponding author:Wu Jianfeng (1971-), male, Jiujiang City, Jiangxi Province, Professor. Research areas include numerical simulation of groundwater.E-mail:jfwu@nju.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “ Mechanism investigation and numerical modeling of downward intrusion of saline groundwater in the central part of North China Plain” (No.41372235).

化学渗透现象引起的“耦合流”研究,已广泛应用于地球科学、环境科学和土木工程等多个领域。回顾了自20世纪50年代以来化学渗透以及黏土半透膜效应的研究进展。分别从理论基础、试验研究和数值模型等3个方面综述了黏土岩土的化学渗透效应的理论及其研究进展,重点阐述了化学渗透现象及其黏土半透膜效应的室内试验、场地试验及野外证据以及化学渗透“耦合流”的不连续模型和连续模型。指出今后应重点研究黏性土化学渗透效应对地下水流及溶质运移的影响研究。这将有利于我国进一步开展考虑化学渗透效应的地下水数值模拟研究。

Osmotic phenomena refer to water and solute transport processes that occur when transport of solute molecules or ions is restricted by the porous medium relative to that of water molecules. Chemical osmosis and reverse osmosis/ultrafiltration are osmotic phenomena. The studies of “coupled flow” caused by chemical osmosis have been widely applied in many fields, such as earth science, environmental science and civil engineering. This paper provided a review of the considerable advances in the field of chemical osmosis and clay semipermeable membrane since the 1950s. We summarized the research progress of chemical osmosis in clayey sediments into three aspects: theoretical basis, experimental research and numerical model. In particular, the laboratory equipment and measurement methods of the chemico-osmotic efficiency coefficient σ were described,. The existing discontinuous models based on the ‘diffusive double layer’ theory were summerized, as well as the various control factors of σ. It increases with Cation Exchange Capacity (CEC), compaction pressure and decreases by the increasing of porosity and solution concentration. This paper also summerized the contimuum models based on non-equilibrium thermodynamics, which are used to explain and predict anomalies of hydraulic head pressure and salinity in clayey environments. For the future development of this discipline, it is critical to find a reliable method to confirm the σ value. It is also critical to emphasize the research on chemical osmosis in complex conditions and the influence of chemical osmosis on groundwater flow and solute transpotation. China has just stepped into this research area and more efforts should be made if significant progress is desired. This review will be helpful to further research on groundwater numerical simulation integrated with chemical osmosis in China.

中图分类号: 

图1 可能发生化学渗透现象的地质构造(据参考文献[6]修改)
Fig.1 Schematic diagram of a setting where chemical osmosis might occur in geologic formation (modified after reference[6])
图2 化学渗透(a)和反渗透(b)现象示意图
Fig.2 A schematic representation showing (a) chemical osmosis and (b) reverse osmosis
图3 化学渗透试验装置示意图 [ 20 ]
Fig.3 Conceptual diagram of a chemical osmosis experiment [ 20 ]
图4 化学渗透试验典型的压力差及浓度差随时间变化情况
Fig.4 A schematic representation of chemical osmosis
表1 化学渗透试验中不同参数对黏土膜性能能力的影响
Table 1 Experimental determined factors affecting the ideality of natural clayey membranes
试验发现 黏土类型 试验解释 参考文献
随着孔隙度的
增加而减小
高岭土
斑脱土
斑脱土
当黏土的孔隙度很小时,黏土颗粒距离较近,黏土表面的双电层重叠几率增加,使黏土具有更高的阻盐能力。相关的不连续模型也可以很明确的表示出孔隙度nσ的反比关系 [34]
[35]
[36]
随着试验溶液浓
度增加而减小
原状白垩系黏土
斑脱土
页岩
黏土的孔隙水浓度是影响黏土膜性能的重要因素之一,很多研究者分别根据双电层理论提出了不同的理论模型均指示了两者的关系。另外,Kharaka等[ 3 ]指出,黏土对不同离子的阻滞能力也是不同的,即黏土在同成分的试验溶液中所表现出的膜性能是不同的 [29]
[37]
[38]
随着围压的
增大而增大
斑脱土
斑脱土
当围压增大时,黏土的孔隙度会相应减小,黏土的膜性能会相应的增高;可以推断,相同的黏土或页岩在埋深较深的地层中会具有较高的σ [39]
[35]
更规则的排列方式具有更高的膜性能 黏土
泥质岩
当组成黏土的片状颗粒排列方式更加规则、孔径大小分布均匀时会表现出更大的膜性能;另外,土样的渗透率也同样是影响膜性能的重要因素 [6]
[40]
会随着黏土的阳离子交换容量的增加而增加 斑脱土
斑脱土
更高的阳离子交换容量表明黏土颗粒表面的电荷密度更高,更高的电荷密度对溶液中的阳离子的阻力更大。由此,具有高阳离子交换容量的黏土可以表现出更大的膜性能 [38]
[41]
会随着渗透率k的增加而减小 泥质岩 黏土的膜性能与渗透率呈现明显的对数线性关系,但与前人的研究不同的是,黏土的膜性能与孔隙度n之间并没有比较明显的关系,与有效弥散度D*的大小也没有特定的关系 [6]
不会与试验尺度的
变化而变化
黏土
原状黏土
在实验室尺度下通过改变黏土样品的厚度发现黏土的膜性能不会发生比较明显的变化。Noy等[ 30 ]对取自现场的原状土以及在当地进行的原位渗透试验相比,发现室内试验与原位试验所测得σ的范围相当。认为将实验室尺度测得的σ应用于野外似乎是可行的 [40]
[30]
会发生与理论方向
相反的渗透流
斑脱土、伊利石、
高岭土
对负渗透的解释是由于溶液离子因弥散作用通过半透膜的同时会将水分子“拖拽”过去而使水流方向与理论方向相反 [42]
表2 主要的不连续模型概述
Table 2 Summary of the discontinuous models for chemical osmosis
模型 模型公式 参数说明 参考文献
简单模型 σ=1- e RT F为Faraday常数(96485.3383±0.0083)(C/mol),
φ是双电层的电势(V )
[33]
KC模型 σkc=1- u f sm n ( f sw + f sm ) fsw为溶剂与水的摩擦系数, fsm为溶剂与黏土颗粒骨架的摩擦系数,n为黏土的孔隙度,uBoltzmann因子;同时, fsm<<fsw,则该模型可简化为σkc=1-u/n [23]
FM模型 σfm=1- ( R w + 1 ) K s R w ( C - a / C - c ) + 1 + R wm R m ( C - a / C - c ) + 1 n
C - c = C - a +CECρp(1-n)
C - a =- 1 2 CECρp(1-n)+ 1 2 CE C 2 ρ p 2 ( 1 - n ) 2 + 4 C s 2 n 2
Ks表示黏土排盐能力的测量值,其值大小可通过双电层中的一价阴离子浓度 C - a (mol/L)与透过黏土半透膜的溶剂浓度的算术平均值Cs(mol/L)的比值来确定( C - a /Cs); C - c (mol/L)为双电层中的阳离子浓度,CEC(meq/100g)是黏土的阳离子交换能力;ρp[g/cm3]为黏土的干容重;Rw,RwmRm 摩擦因子比值 [39]
均质模型 σhom= 3 2 RT 2 1 cos h 2 λ / 2 1 6 + 1 2 λ 2 ( coshλ - 1 λ sinhλ ) ζ(mV)为黏土颗粒的zeta电位(mV);λ=2b/LD,其中b为黏土颗粒水膜厚度,LD为德拜长度 [44]
Bolt模型 σ Bolt = 12 ( κ 0 b ) 3 κ 0 b ln ( 1 + t s ) - κ 0 b 2 t d 1 + t d - n = 1 - t d n n 2 + n = 1 - t s n n 2 t s = e - κ 0 δ ) , t d = e - κ 0 ( b + δ ) ) κ0b为有效双电层厚度,δ(m)为阳离子浓度无穷大的假象面与颗粒表面的距离(m) [45,46]
Bresler 模型 σBresler= 1 2 1 - erf 0.4 ( v - 7 ) 0.9 v Where v=b C s M s 该公式为根据Bolt模型与不同的试验结果总结得出的经验公式,Ms(g/mol)为溶质的摩尔质量 [27]
三层模型 σTLM=1- 1 + R 2 -R(1-2T+) R为孔隙水中过量的反离子相对于孔隙水盐度的比值,T+为孔隙水中阳离子的Hittorf数 [47,48]
[1] Qin Ronggao, Cao Guangzhu, Wu Yanqing.Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science,2014, 29(1): 30-41.
[覃荣高,曹广祝,仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.]
[2] Garavito A M.Chemical Osmosis in Clayey Sediments[D]. Amsterdam, The Netherlands: Vrije Universiteit, 2005.
[3] Kharaka Y K, Berry F A.Simultaneous flow of water and solutes through geological membranes—I. Experimental investigation[J]. Geochimica et Cosmochimica Acta, 1973, 37(12): 2 577-2 603.
[4] Hanshaw B B, Coplen T B.Ultrafiltration by a compacted clay membrane—II. Sodium ion exclusion at various ionic strengths[J]. Geochimica et Cosmochimica Acta, 1973, 37(10): 2 311-2 327.
[5] Hanshaw B B, Hill G A.Geochemistry and hydrodynamics of the Paradox basin region, Utah, Colorado and New Mexico[J].Chemical Geology,1969, 4(1): 263-294.
[6] Takeda M, Hiratsuka T, Manaka M, et al. Experimental examination of the relationships among chemico-osmotic, hydraulic, and diffusion parameters of Wakkanai mudstones[J].Journal of Geophysical Research:Solid Earth,2014, 119(5): 4 178-4 201.
[7] Allègre V, Jouniaux L, Lehmann F, et al. Streaming potential dependence on water-content in Fontainebleau sand[J].Geophysical Journal International, 2010, 182(3): 1 248-1 266.
[8] Darnet M, Marquis G.Modelling streaming potential (SP) signals induced by water movement in the vadose zone[J]. Journal of Hydrology, 2004, 285(1/4): 114-124.
[9] Kharaka Y K, Cole D R, Thordsen J J, et al. Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA[J].Journal of Geochemical Exploration, 2006, 89(1/3): 183-186.
[10] Linde N, Jougnot D, Revil A, et al. Streaming current generation in two-phase flow conditions[J]. Geophysical Research Letters, 2007, 34(3): 340-354.
[11] Cleall P J, Seetharam S C, Thomas H R.Inclusion of some aspects of chemical behavior of unsaturated soil in thermo/hydro/chemical/mechanical models. I: model development[J]. Journal of Engineering Mechanics,2007, 133(3): 338-347.
[12] Soler J M.The effect of coupled transport phenomena in the Opalinus clay and implications for radionuclide transport[J].Journal of Contaminant Hydrology,2001, 53(1/2): 63-84.
[13] Peters G P, Smith D W.The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5/6): 467-486.
[14] Bader S, Kooi H.Modelling of solute and water transport in semi-permeable clay membranes: Comparison with experiments[J]. Advances in Water Resources, 2005, 28(3): 203-214.
[15] Koniorczyk M, Gawin D.Heat and moisture transport in porous building materials containing salt[J]. Journal of Building Physics, 2008, 31(4): 279-300.
[16] Ghassemi A, Tao Q, Diek A.Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J].Journal of Petroleum Science and Engineering,2009, 67(1/2): 57-64.
[17] Sherwood J D, Craster B.Transport of water and ions through a clay membrane[J].Journal of Colloid and Interface Science, 2000, 230(2): 349-358.
[18] Li Qi, Song Ranran, Kuang Dongqin, et al. Status and advances of abandoned process of wells for CO2 geological storage[J].Advances in Earth Science, 2016, 31(3): 225-235.
[李琦, 宋然然, 匡冬琴, 等. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.]
[19] Xi Yonghui, Feng Shijin.Development of study on semi-permeable membrane of clayey soil[J].Journal of Tongji University (Natural Science), 2009, 37(2): 187-191.
[席永慧, 冯世进. 粘质土壤的膜性能研究进展[J]. 同济大学学报:自然科学版, 2009, 37(2): 187-191.]
[20] Sun Xiaomin, Wu Jianfeng, Shi Xiaoqing, et al. Experimental study of the interaction between saline and fresh groundwater induced by chemical osmosis in the aquitard for the North China Plain[J].Journal of Nanjing University (Natural Sciences), 2016, 52(3): 421-428.
[孙晓敏, 吴剑锋, 施小清, 等. 华北平原咸-淡含水层间粘性土层的化学渗透效应研究[J]. 南京大学学报:自然科学版, 2016, 52(3): 421-428.]
[21] Keijzer T J S, Kleingeld P J, Loch J P G. Chemical osmosis in compacted clayey material and the prediction of water transport[J].Engineering Geology, 1999, 53(2): 151-159.
[22] Malusis M A, Shackelford C D.Chemico-osmotic efficiency of a geosynthetic clay liner[J].Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(2): 97-106.
[23] Katchalsky A, Curran P F.Nonequilibrium Thermodynamics in Biophysics[M]. Cambridge, MA:Harvard University Press, 1965.
[24] Wood W W.A hypothesis of ion filtration in a potable-water aquifer system[J].Groundwater, 1976, 14(4): 233-244.
[25] Keijzer T J S, Loch J P G. Chemical osmosis in compacted dredging sludge[J]. Soil Science Society of America Journal, 2001, 65(4): 1 045-1 055.
[26] Kang J, Shackelford C D.Clay membrane testing using a flexible-wall cell under closed-system boundary conditions[J]. Applied Clay Science, 2009, 44(1/2): 43-58.
[27] Bresler E.Anion exclusion and coupling effects in non-steady transport through unsaturated soils: I. Theory[J]. Soil Science Society of America Journal,1973, 37(5): 663-669.
[28] Marine I W, Fritz S J.Osmotic model to explain anomalous hydraulic heads[J]. Water Resources Research, 1981, 17(1): 73-82.
[29] Neuzil C E.Osmotic generation of ‘anomalous’ fluid pressures in geological environments[J]. Nature, 2000, 403(6 766): 182-184.
[30] Noy D J, Horseman S T, Harrington J F, et al. An experimental and modelling study of chemico-osmotic effects in the Opalinus clay of Switzerland[R]∥Mont Terri Project-Hydrogeological Synthesis, Osmotic Flow. Reports of the Federal Office for Water and Geology (FOWG), Geology Series, 2004.
[31] Garavito A M, De Cannière P, Kooi H.In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory[J]. Physics and Chemistry of the Earth, Parts A/B/C,2007, 32(1/7): 421-433.
[32] Cruchaudet M, Croisé J, Lavanchy J M.In situ osmotic experiment in the Callovo-Oxfordian argillaceous formation at the Meuse/Haute-Marne URL (France): Data and analysis[J].Physics and Chemistry of the Earth, Parts A/B/C,2008, 33: S114-S124.
[33] Bader S.Osmosis in Groundwater: Chemical and Electrical Extensions to Darcy's Law[M]. TU Delft: Delft University of Technology, 2005.
[34] Olsen H W.Simultaneous fluxes of liquid and charge in saturated kaolinite[J]. Soil Science Society of America Journal, 1969, 33(3): 338-344.
[35] Yeo S, Shackelford C D, Evans J C.Membrane behavior of model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 418-429.
[36] Henning J T, Evans J C, Shackelford C D.Membrane behavior of two backfills from field-constructed soil-bentonite cutoff walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1 243-1 249.
[37] Cey B D, Barbour S L, Hendry M J.Osmotic flow through a Cretaceous clay in southern Saskatchewan, Canada[J]. Canadian Geotechnical Journal, 2001, 38(5): 1 025-1 033.
[38] Oduor P G, Santos X, Forward K, et al. Semi-empirically derived petrophysical and thermodynamical coefficients of permselective shales—Implications on ore mineralization[J]. Journal of Membrane Science, 2009, 343(1): 171-179.
[39] Fritz S J, Marine I W.Experimental support for a predictive osmotic model of clay membranes[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1 515-1 522.
[40] Benzel W M, Graf D L.Studies of smectite membrane behavior: Importance of layer thickness and fabric in experiments at 20℃[J]. Geochimica et Cosmochimica Acta,1984, 48(9): 1 769-1 778.
[41] Malusis M A, Shackelford C D, Olsen H W.Flow and transport through clay membrane barriers[J]. Engineering Geology,2003, 70(3/4): 235-248.
[42] Kemper W D, Quirk J P.Ion mobilities and electric charge of external clay surfaces inferred from potential differences and osmotic flow[J].Soil Science Society of America Journal, 1972, 36(3): 426-433.
[43] Medved I, Ĉerny R.Osmosis in porous media: A review of recent studies[J]. Microporous and Mesoporous Materials, 2013, 170: 299-317, doi:10.1016/j.micromeso.2012.12.009.
[44] Moyne C, Murad M.Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure[J]. International Journal of Solids and Structures, 2002, 39(25): 6 159-6 190.
[45] Bolt G H.Electrochemical phenomena in soil and clay systems[J]. Developments in Soil Science, 1979, 5: 387-432.
[46] Bolt G H.Soil Chemistry B: Physico-chemical Models[M]. Amsterdam: Elsevier Scientific Publishing Company, 1979.
[47] Revil A, Leroy P.Constitutive equations for ionic transport in porous shales[J]. Journal of Geophysical Research Atmospheres, 2004, 109(109): 223-229.
[48] Rousseau-Gueutin P, Gonçalvès J, Violette S.Osmotic efficiency in Callovo-Oxfordian argillites: Experimental vs. theoretical models[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S106-S113.
[49] Greenberg J A, Mitchell J K, Witherspoon P A.Coupled salt and water flows in a groundwater basin[J]. Journal of Geophysical Research, 1973, 78(27): 6 341-6 353.
[50] Sherwood J D, Craster B.Transport of water and ions through a clay membrane[J]. Journal of Colloid and Interface Science, 2000, 230(2): 349-358.
[51] Kedem O, Katchalsky A.Thermodynamic analysis of the permeability of biological membranes to non-electrolytes[J]. Biochimica et Biophysica Acta, 1958, 27(2): 229-246.
[52] Katchalsky A, Kedem O.Thermodynamics of flow processes in biological systems[J]. Biophysical Journal, 1962, 2(2 Pt 2): 53-78.
[53] Malusis M A, Shackelford C D.Theory for reactive solute transport through clay membrane barriers[J]. Journal of Contaminant Hydrology,2002, 59(3/4): 291-316.
[54] Kooi H, Garavito A M, Bader S.Numerical modelling of chemical osmosis and ultrafiltration across clay formations[J]. Journal of Geochemical Exploration,2003, 78: 333-336,doi:10.1016/S0375-6742(03)00038-4.
[55] Garavito A M, Kooi H, Neuzil C E.Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale, South Dakota[J]. Advances in Water Resources,2006, 29(3): 481-492.
[56] Sun X M, Wu J F, Shi X Q, et al. Experimental and numerical modeling of chemical osmosis in the clay samples of the aquitard in the North China Plain[J]. Environmental Earth Sciences, 2016, 75(1): 1-12.
[57] Koniorczyk M, Gawin D.Heat and moisture transport in porous building materials containing salt[J]. Journal of Building Physics, 2008, 31(4): 279-300.
[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[4] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[5] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[6] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[7] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[10] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[13] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[14] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[15] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
阅读次数
全文


摘要