地球科学进展 ›› 2016, Vol. 31 ›› Issue (12): 1220 -1227. doi: 10.11867/j.issn.1001-8166.2016.12.1220

上一篇    下一篇

石盐流体包裹体中古嗜盐菌的研究进展
王九一( ), 刘成林   
  1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 100037
  • 收稿日期:2016-08-16 修回日期:2016-10-21 出版日期:2016-12-20
  • 基金资助:
    国家自然科学基金项目“柴达木盆地西部盐湖沉积岩相特征记录的亚洲内陆干旱化”(编号:41302133);国家重点基础研究发展计划项目“中国陆块海相成钾规律及预测研究”(编号:2011CB403007)资助

Reviews on Ancient Halophilic Microbes in Halite Fluid in Clusions

Jiuyi Wang( ), Chenglin Liu   

  1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences, Beijing 100037,China
  • Received:2016-08-16 Revised:2016-10-21 Online:2016-12-20 Published:2016-12-20
  • About author:

    First author:Wang Jiuyi(1983-), male, Nanyang City, He’nan Province, Assistant professor. Research areas include evaporites and paleoclimate.E-mail:wjyhlx@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Aridification in Asian interior recorded by lithofacies feature of saline lake sediments in western Qaidam Basin”(No.41302133);the State Key Development Program for Basic Research of China “Mineralization regularity and prediction of potash deposits of marine basins in Chinese microplate”(No.2011CB403007)

蒸发盐矿物流体包裹体能够将结晶卤水中的嗜盐菌包裹起来,并随着盐类沉积而将其封闭保存起来。在矿物流体包裹体的缺氧、密闭、低营养的极端环境中,一些古代的嗜盐菌经历数万年,甚至数百万年仍然保持活性。对石盐流体包裹体中古嗜盐菌的发现、分离和鉴定历史进行详细综述,系统论述古嗜盐菌引发的地质学家和微生物学家的长期论战,提出该领域存在的问题,并展望未来的研究方向。蒸发盐矿物流体包裹体古嗜盐菌的研究需要重视蒸发盐岩的岩相学和沉积环境分析,并遵循严格的微生物学实验策略。古嗜盐菌的未来研究应重点关注石膏、钙芒硝、天然碱等蒸发盐矿物,着眼于识别和鉴定更古老的古嗜盐菌,探究古嗜盐菌的生存机制。

Fluid inclusions trapped in ancient evaporites can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the minerals formed. Entombed in the fluid inclusions in evaporites, some of these halophilic microbes remain viable for at least tens of thousands of years and possibly for hundreds of millions of years, even under high salinity, low oxygen, high radiation, low nutrient concentration. This review presents the scientific history of discovery, isolation, and culture of ancient halophilic microbes in halite fluid inclusions. We elucidated the controversy associated with the ancient halophilic microbes between geologists and geomicrobiologists. Major concerns and future perspectives on halophiles research were proposed. We emphasized that lithofacies analysis and depositional environment determination on evaporites are prerequisites before any microbiological survey, and rigorous biological protocol must be obeyed at all retrieval procedures for ancient microorganisms. We suggested that future study related to ancient halophilic microbes should focus on other evaporites such as gypsum, glauberite, and trona, characterize and identify older halophiles; clarify metabolic mechanism for longevity of ancient microorganisms.

中图分类号: 

图1 Vreeland的实验设备(a)和美国堪萨斯州二叠纪WIPP矿洞石盐(b) [ 6 ]
Fig.1 Apparatus for drilling salt crystal (a) and halite crystals taken from the Permian Salado Formation (b), Kansas [ 6 ]
图2 柴达木盆地察汗斯拉图凹陷SG-1孔石盐流体包裹体中单细胞盐湖杜氏藻和类胡萝卜素的显微照片 [ 14 ]
(a)类胡萝卜素覆盖的绿色—黄橙色杜氏藻细胞(粗箭头),62.3 m (0.18 Ma),圆圈中的微粒是原核生物;(b)类胡萝卜素覆盖的红色单细胞杜氏藻(粗箭头),201.7 m(0.45 Ma);(c)覆盖杜氏藻的类胡萝卜素在正交偏光下的双折射现象;(d)图(b)中绿色的杜氏藻(圆圈中)在荧光显微镜下发射红色荧光
Fig.2 Photomicrographs of single-celled algae and carotenoids in fluid inclusions in halite from core SG-1 [ 14 ]
(a) Algal cells covered with carotenoids (arrows) in fluid inclusion,depth of 62.3 m (0.18 Ma), small coccoid-shaped cells (circled) are prokaryotes;(b) Red-orange algal cells (arrows) encrusted by carotenoids, 201.7 m (0.45 Ma), small coccoid-shaped cell (circled) is a prokaryote;(c) Carotenoids on surfaces of algal cells are birefringent under cross-polarized light; (d) Greenish algal cell in (b) (circled) autofluoresces using epifluorescence microscopy
[1] Goldstein R H, Reynolds T J.Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31[M]. Tulsa: SEPM, 1994.
[2] Griffith J D, Willcox S, Powers D W,et al.Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: A macromolecular target in the search for life on other planets[J]. Astrobiology,2008, 8(2): 215-228.
[3] Stan-Lotter H, McGenity T J, Legat A,et al. Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits[J]. Microbiology,1999, 145(12): 3 565-3 574.
[4] Stan-Lotter H, Pfaffenhuemer M, Legat A,et al.Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit[J]. International Journal of Systematic and Evolutionary Microbiology,2002, 52(5): 1 807-1 814.
[5] Vreeland R H, Jones J, Monson A,et al.Isolation of live Cretaceous (121-112 million years old) halophilic Archaea from primary salt crystals[J]. Geomicrobiology Journal,2007, 24: 275-282,doi:10.1080/01490450701456917.
[6] Vreeland R H, Rosenzweig W D, Powers D W.Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal[J].Nature,2000, 407(6 806): 897-900.
[7] Mormile M R, Biesen M A, Gutierrez M C,et al.Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions[J]. Environmental Microbiology,2003, 5(11):1 094-1 102.
[8] Gruber C, Legat A, Pfaffenhuemer M,et al.Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum[J]. Extremophiles,2004, 8(6): 431-439.
[9] Schubert B A, Lowenstein T K, Timofeeff M N.Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California[J].Astrobiology,2009, 9(5): 467-482.
[10] Schubert B A, Lowenstein T K, Timofeeff M N,et al.How do prokaryotes survive in fluid inclusions in halite for 30 ky?[J]. Geology,2009, 37(12): 1 059-1 062.
[11] Schubert B A, Lowenstein T K, Timofeeff M N,et al.Halophilic archaea cultured from ancient halite, Death Valley, California[J]. Environmental Microbiology,2010, 12(2): 440-454.
[12] Schubert B A, Timofeeff M N, Lowenstein T K,et al.Dunaliella cells in fluid inclusions in halite: Significance for long-term survival of prokaryotes[J]. Geomicrobiology Journal,2010, 27(1): 61-75.
[13] Gramain A, Díaz G C, Demergasso C,et al.Archaeal diversity along a subterranean salt core from the Salar Grande (Chile)[J]. Environmental Microbiology,2011, 13(8): 2 105-2 121.
[14] Wang J, Lowenstein T K, Fang X.Microbial habitability and pleistocene aridification of the Asian Interior[J].Astrobiology,2016, 16(6): 379-388.
[15] Radax C, Gruber C, Stan-Lotter H.Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt[J].Extremophiles,2001,5(4):221-228.
[16] Fish S A, Shepherd T J, McGenity T J,et al. Recovery of 16S ribosomal RNA gene fragments from ancient halite[J]. Nature,2002, 417(6 887): 432-436.
[17] Park J S, Vreeland R H, Cho B C,et al.Haloarchaeal diversity in 23, 121 and 419 MYA salts[J]. Geobiology,2009, 7(5): 515-523.
[18] Sankaranarayanan K, Lowenstein T K, Timofeeff M N,et al.Characterization of ancient DNA supports long-term survival of haloarchaea[J]. Astrobiology,2014, 14(7): 553-560.
[19] Sankaranarayanan K, Timofeeff M N, Spathis R,et al.Ancient microbes from halite fluid inclusions: Optimized surface sterilization and DNA extraction[J]. PLoS One,2011, 6(6): e20683,doi:10.1371/journal.pone.0020683.
[20] Lowenstein T K, Schubert B A, Timofeeff M N.Microbial communities in fluid inclusions and long-term survival in halite[J].GSA Today,2011, 21(1): 4-9.
[21] Winters Y D, Lowenstein T, Timofeeff M.Identification of carotenoids in ancient salt from death valley, saline valley, and Searles Lake, California, using laser raman spectroscopy[J].Astrobiology,2013, 13(11): 1 065-1 080.
[22] Winters Y D, Lowenstein T K, Timofeeff M N.Starvation-survival in haloarchaea[J].Life,2015, 5(4): 1 587-1 609.
[23] McGenity T J, Gemmell R T, Grant W D,et al. Origins of halophilic microorganisms in ancient salt deposits[J]. Environmental Microbiology,2000, 2(3): 243-250.
[24] Roedder E.The fluids in salt[J]. American Mineralogist,1984, 69(5):413-439.
[25] Lowenstein T, Brennan S T.Fluid inclusions in paleolimnological studies of chemical sediments[M]∥Last W M, Smol J P, eds. Tracking Environmental Change Using Lake Sediments. New York: Kluwer Academic Publishers, 2002: 189-216.
[26] Dombrowski H J.Balneobiologische untersuchungen der nauheimer quellen[J].Zentralbl Bakteriol Parasitenkd Infektionskr Hygiene,1960, 178: 83-90.
[27] Reiser R, Tasch P.Investigation of the viability of osmophile bacteria of great geological age[J].Transactions of the Kansas Academy of Science,1960, 63: 31-34.
[28] Dombrowski H.Bacteria from Paleozoic salt deposits[J].Annals of the New York Academy of Sciences,1963, 108(2): 453-460.
[29] Dombrowski H J.Geological problems in the question of living bacteria in Paleozoic salt deposits[M]∥Rau J L, ed. Second Symposium on Salt. Cleveland. Ohio: Northern Ohio Geological Society, 1966: 215-219.
[30] Bibo F, Söngen R, Fresenius R.Vermehrungsfähige mikroorganismen in steinsalz aus primären lagerstätten[J].Kali und Steinsalz,1983, 8: 367-373.
[31] Norton C F, Grant W D.Survival of halobacteria within fluid inclusions in salt crystals[J].Journal of General Microbiology,1988, 134(5): 1 365-1 373.
[32] Norton C F, McGenity T J, Grant W D. Archaeal halophiles (halobacteria) from two British salt mines[J]. Journal of General Microbiology,1993, 139(5): 1 077-1 081.
[33] Grant W D, Gemmell R T, McGenity T J. Halobacteria: The evidence for longevity[J]. Extremophiles,1998, 2(3): 279-287.
[34] Vreeland R H, Rosenzweig W D.Survival of halophilic bacteria in ancient salts: Possibilities and potentials[M]∥Seckbach J, ed. Enigmatic Microorganisms and Life in Extreme Environments. The Netherlands: Kluwer Academic Publishers, 1999: 387-398.
[35] Fredrickson J K, Chandler D P, Onstott T C.Potential for preservation of halobacteria and their macromolecular constituents in brine inclusions from bedded salt deposits[C]∥SPIE Proceedings, 1997.
[36] Fendrihan S, Stan-Lotter H.Survival of halobacteria in fluid inclusions as a model of possible biotic survival in Martian halite[M]∥Teodorescu H, Griebel H, eds. Mars and Planetary Science and Technolgy. Iasi, Romania: Performantica Press, 2004: 9-18.
[37] Fendrihan S, Legat A, Pfaffenhuemer M,et al.Extremely halophilic archaea and the issue of long-term microbial survival[J]. Reviews in Environmental Science Biotechnology,2006, 5(2/3): 203-218.
[38] Adamski J C, Roberts J A, Goldstein R H.Entrapment of bacteria in fluid inclusions in laboratory-grown halite[J].Astrobiology,2006, 6(4): 552-562.
[39] Hazen R M, Roedder E.How old are bacteria from the Permian age[J].Nature,2001, 411(6 834): 155-156.
[40] Graur D, Pupko T.The Permian bacterium that isn’t[J].Molecular Biology and Evolution,2001, 18(6): 1 143-1 146.
[41] Nickle D C, Learn G H, Rain M W,et al.Curiously modern DNA for a ‘250 Million-Year-Old’ bacterium[J]. Journal of Molecular Evolution,2002, 54(1): 134-137.
[42] Hebsgaard M B, Phillips M J, Willerslev E.Geologically ancient DNA: Fact or artefact?[J].Trends in Microbiology,2005, 13(5): 212-220.
[43] Willerslev E, Hansen A J, Rønn R,et al.Long-term persistence of bacterial DNA[J]. Current Biology,2004, 14(1): R9-R10.
[44] Willerslev E, Cooper A.Ancient DNA[J].Proceedings of the Royal Society of London B: Biological Sciences,2005, 272(1 558): 3-16.
[45] Satterfield C L, Lowenstein T K, Vreeland R H,et al.New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal[J]. Geology,2005, 33(4): 265-268.
[46] Lowenstein T K, Hardie L A.Criteria for the recognition of salt-pan evaporites[J].Sedimentology,1985, 32(5): 627-644.
[47] Arthurton R S.Experimentally produced halite compared with Triassic layered halite-rock from Cheshire, England[J]. Sedimentology,1973, 20(1): 145-160.
[48] Wardlaw N, Schwerdtner W.Halite-anhydrite seasonal layers in the middle Devonian Prairie evaporite formation, Saskatchewan, Canada[J].Geological Society of America Bulletin,1966, 77(4): 331-342.
[49] Panieri G, Lugli S, Manzi V,et al.Microbial communities in Messinian evaporite deposits of the Vena del Gesso (northern Apennines, Italy)[J]. Stratigraphy,2008, 5(34): 343-352.
[50] Panieri G, Lugli S, Manzi V,et al.Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy[J]. Geobiology,2010, 8(2): 101-111.
[51] Schopf J W, Farmer J D, Foster I S,et al.Gypsum-permineralized microfossils and their relevance to the search for life on Mars[J]. Astrobiology,2012, 12(7): 619-633.
[52] Benison K C, Karmanocky F J.Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples[J].Geology,2014, 42(7): 615-618.
[53] Roveri M, Flecker R, Krijgsman W,et al.The messinian salinity crisis: Past and future of a great challenge for marine sciences[J]. Marine Geology,2014, 352: 25-58,doi:10.1016/j.margeo.2014.02.002.
[54] Bishop J L, Dyar M D, Lane M D,et al.Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth[J]. International Journal of Astrobiology,2004, 3(4): 275-285.
[55] Clark B C, Morris R V, McLennan S M,et al. Chemistry and mineralogy of outcrops at Meridiani Planum[J]. Earth and Planetary Science Letters,2005, 240(1): 73-94.
[56] Gendrin A, Mangold N, Bibring J-P,et al.Sulfates in martian layered terrains: The OMEGA/Mars express view[J]. Science,2005, 307(5 715): 1 587-1 591.
[57] Squyres S W, Arvidson R E, Bell J,et al.Ancient impact and aqueous processes at Endeavour Crater, Mars[J]. Science,2012, 336(6 081): 570-576.
[58] Davis L E.An Astrobiological Study of an Alkaline-saline Hydrothermal Environment, Relevant to Understanding the Habitability of Mars[D]. London: University College London, 2012.
[59] Novitsky J A, Morita R Y.Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio[J].Applied and Environmental Microbiology,1976, 32(4): 617-622.
[60] Kjelleberg S, Humphrey B A, Marshall K C.Initial phases of starvation and activity of bacteria at surfaces[J].Applied and Environmental Microbiology,1983, 46(5): 978-984.
[1] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[2] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[3] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[4] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[5] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
[6] 李兆丽;胡瑞忠;彭建堂;毕献武;李晓敏. 稀有气体同位素示踪成矿古流体研究进展[J]. 地球科学进展, 2005, 20(1): 57-063.
[7] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[8] 秦朝建,裘愉卓. 岩浆(型)碳酸岩研究进展[J]. 地球科学进展, 2001, 16(4): 501-507.
[9] 孙 青,曾贻善. 单个流体包裹体成分无损分析进展[J]. 地球科学进展, 2000, 15(6): 673-678.
[10] 常兆山. 流体包裹体各相体积测定的现状和探索[J]. 地球科学进展, 1995, 10(6): 555-561.
阅读次数
全文


摘要