地球科学进展 ›› 2015, Vol. 30 ›› Issue (7): 791 -801. doi: 10.11867/j.issn.1001-8166.2015.07.0791

上一篇    下一篇

三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应
李育( ), 朱耿睿   
  1. 兰州大学资源环境学院,兰州大学干旱区水循环与水资源研究中心,甘肃 兰州 730000
  • 出版日期:2015-07-20
  • 基金资助:
    国家自然科学基金项目“风成沉积环境与水循环对流域性千年尺度气候变化的响应——以石羊河流域为例”(编号:41371009)资助

Changes of Climate Zones in the Transition Area of Three Natural Zones during the Past 50 Years and Their Responses to Climate Change

Yu Li( ), Gengrui Zhu   

  1. College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou, Gansu 730000, China
  • Online:2015-07-20 Published:2015-07-20

三大自然区(东部季风区、西北干旱区、青藏高原区)过渡地带,由于其特殊的地理位置,受到亚洲季风、中纬度西风环流共同影响,对气候变化的响应较为敏感。使用国际通用的柯本气候分类法和国内常用的积温与干燥度分类法,研究了97.5°~108°E,33°~41.5°N的三大自然区过渡地带1961—2010年的气候带类型及其变化过程。并通过将各气候类型的面积变化与主要季风指数、西风指数和南方涛动等主要指数进行了对比,并计算了他们的关系,与此同时结合东亚各气候区气温及降水的变化模式探讨三大自然区过渡地带气候变化对各气候系统的响应。基于此项研究:夏季西风和东亚冬季风的增强会使该区域变湿,东亚夏季风、南亚夏季风增强则会使该区域海拔较低的区域变干,海拔较高的区域变湿。高原夏季风的增强则会使整个区域变干。北大西洋涛动增强,会使该区域变湿;厄尔尼诺增强(减弱),则会使该区域变干(变湿)。总体来讲,该区域的水分状况主要受控于中纬度西风带环流,虽然亚洲夏季风的增强有可能会增加该区域东南部的降水,但是根据计算出的干燥度和气候带类型变化,增温效应可能会抵消降水增加,从而使该区域变干。根据本项研究,三大自然区过渡地带受到多个气候系统的相互作用,气温及降水等单一指标,并不能完全代表该区域气候变化特征,气候带类型面积变化可以作为一个重要的指标运用于该区域气候变化评价。

The transition area of three natural zones (Eastern Monsoon Region, Arid Region of Northwest China, Qinghai Tibet Plateau Region) is influenced by the Asian monsoon and middle latitude westerly circulation because of its special geographical position. And it is more sensitive to global climate change. The Koppen climate classification, which is widely used in the world, and the accumulated temperature-dryness classification, which is usually used in China, were used to study the climate zones and changes in the region of longitude 97.5°~108°E, latitude 33°~41.5°N, from 1961 to 2010. The changing areas of each climate zone were compared to the East Asian Summer Monsoon index, the South Asian Summer Monsoon index, the Summer Westerly index, the East Asian Winter Monsoon index, the Plateau Summer Monsoon index, the North Atlantic Oscillation index, the Southern Oscillation index, NINO3.4 index, to explore the response of the transition area of three natural zones to each climate system. According to the results, this region will become wetter when the Summer Westerly or the East Asian Winter Monsoon is relatively strong. When the East Asian Summer Monsoon or the South Asian Summer Monsoon becomes strong, the climate in low altitude region of the study area will easily become drier, and the climate in high altitude region of the study area is easily to become wetter. When the Plateau Summer Monsoon is relatively strong, the climate in the study area will easily become drier. When the North Atlantic Oscillation is relatively strong, the study area will easily become wetter. And when the El Niño is relatively strong, or the Southern Oscillation is relatively weak, the study area will easily become drier. In general, the moisture status of this region is mainly controlled by the middle latitude westerly circulation. The enhancement of the Asian summer monsoon could increase the precipitation in the southeast part of this regional, but, according to the degrees of dryness and the types of climate change in this paper, warming effects could offset precipitation increasing and make the area drier. The transition area of three natural zones is influenced by multiple interactions of climate systems from East Asia. A single climatic index, such as air temperature or precipitation, can not completely represent the regional features of climate change. As a result, areas of climate zones can be used as an important index in the regional climate change assessment.

中图分类号: 

图 1 研究区域位置
Fig. 1 Location of study area
表1 柯本气候符号及定义标准
Table 1 Description of Köppen climate symbols and defining criteria
表 2 积温分类的气候符号及定义标准
Table 2 Description of accumulated temperature climate symbols and defining criteria
图 2. 研究区域基于柯本气候分类的1961—2010年气候分布
Fig. 2 Types of climate zones in the study area from 1961 to 2010 based on Köppen climate classification
图 3. 研究区域基于积温分类法的1961—2010年气候分布
Fig. 3 Types of climate zones in the study area from 1961 to 2010 based on accumulated temperature climate classification
图 4 基于柯本气候分类法的1961-2010年各气候类型面积变化
Fig. 4 Area changes for climate zones from 1961 to 2010 based on Köppen climate classification
图 5 基于积温分类法的1961—2010年各气候类型面积变化
Fig. 5 Area changes for climate zones from 1961 to 2010 based on accumulated temperature climate classification
图 6 EASMI,SASMI,SWI,ESWMI,PSMI,NAOI,SSTA,SOI随时间变化图
Fig. 6 EASMI,SASMI,SWI,ESWMI,PSMI,NAOI,SSTA,SOI change over time
表3 各气候类型面积与各指数相关系数表
Table 3 Correlation coefficients between climate zones and climatic indices
东亚夏季风指数 南亚夏季风指数 夏季西风指数 东亚冬季风指数 高原夏季风指数 厄尔尼诺指数 南方涛动指数 北大西洋涛动指数
东亚夏季风指数 - 0.7616*** 0.3824*** 0.1141 -0.3381** 0.0239 -0.0291 0.2109
南亚夏季风指数 0.7616*** - 0.3862*** 0.2983** -0.4936*** 0.0187 -0.0624 0.0993
夏季西风指数 0.3824*** 0.3862*** - 0.0261 -0.5992*** 0.0679 -0.1262 0.0874
东亚冬季风指数 0.1141 0.2983** 0.0261 - -0.2404* -0.2353 0.1277 -0.1087
高原夏季风指数 -0.3381** -0.4936*** -0.5992*** -0.2404* - 0.103 -0.0317 -0.0534
厄尔尼诺指数 0.0239 0.0187 0.0679 -0.2353 0.103 - -0.9186*** 0.0829
南方涛动指数 -0.0291 -0.0624 -0.1262 0.1277 -0.0317 -0.9186*** - -0.2497*
北大西洋涛动指数 0.2109 0.0993 0.0874 -0.1087 -0.0534 0.0829 -0.2497* -
II-1 0.0125 0.098 0.2287 0.3115** -0.2544* -0.214 0.0505 0.2324
II-2 -0.1339 -0.079 -0.0416 -0.1655 -0.051 0.2389* -0.1517 -0.1234
II-3 0.1767 0.3177** 0.0854 0.3455** -0.2666* -0.0912 0.0807 -0.0891
III-1 -0.0294 -0.0267 -0.0271 0.2421* -0.1422 -0.4265*** 0.3079** -0.1901
III-2 -0.0766 -0.1355 -0.0806 -0.2271 0.1743 0.2722* -0.1767 0.1044
III-3 -0.3097** -0.3587** 0.1119 -0.0938 -0.0535 0.0444 -0.0052 -0.0893
III-4 0.2184 0.1719 -0.1691 -0.176 0.2729* 0.116 -0.0803 0.0899
X-1 0.1589 0.2464* 0.2485* 0.2679* -0.2259 -0.1198 0.02 0.2451
Cs -0.2205 -0.1922 0.0074 -0.2124 0.0722 -0.1627 0.1019 0.0504
Cw 0.0784 0.0521 -0.0316 -0.0715 0.0818 0.0558 0.0264 0.0127
Dw 0.1392 0.147 0.1639 0.1699 -0.1833 -0.4949*** 0.4047*** -0.114
Bs -0.1753 -0.1675 0.1554 -0.11 -0.114 0.2946** -0.1966 -0.0654
Bw 0.1011 -0.0013 -0.2679* -0.3065** 0.3484** 0.2313 -0.1353 -0.0227
ET -0.1193 0.018 -0.0283 0.3998*** -0.1192 0.0565 -0.1821 0.2431*
[1] Li Y, Wang N, Chen H, et al.Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon[J]. Journal of Asian Earth Sciences, 2012, 58: 78-87.
[2] Akiyo Yatagai, Tetsuzo Yasunari.Variation of summer water vapor transport over and around the arid region in the interior of the Eurasian continent[J].Journal of the Meteorological Society of Japan, 1998, 76: 799-815.
[3] Zhang Qiang, Zhang Jie, Sun Guowu, et al.Researth on atmospheric water-vapor distribution over Qilianshan Mountains[J].Acta Meteorology Sinica, 2007, 65(4): 632-643.
[张强, 张杰, 孙国武, 等.祁连山山区空中水汽分布特征研究[J]. 气象学报, 2007, 65(4) : 632-643.]
[4] Fu Congbin, Ye Duzheng.Global change and the future trend of ecological environment evolution in China[J]. Scientia Atmospherica Sinica, 1995, 19(1) : 116-126.
[符淙斌, 叶笃正. 全球变化和我国未来的生存环境[J].大气科学, 1995, 19(1): 116-126.]
[5] Akiyo Yatagai, Tetsuzo Yasunari.Interannual variations of summer precipitation in the arid/semi-arid regions in China and Mongolia:Their regionality and relation to the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan,1995, 73:909-923.
[6] Li Dongliang, Liang Jinnan, Wang Wen.A study of summer precipitation features and anomaly in northwest China[J]. Scientia Atmospherica Sinica, 1997, 21(3) : 331-340.
[李栋梁, 梁金南, 王文. 中国西北夏季降水特征及其异常研究[J]. 大气科学, 1997, 21(3): 331-340.]
[7] Fu Congbin, Wen Gang.Several issue on aridfication in the Northern China[J].Climatic and Environmental Research, 2002, 7(1) : 22-29.
[符淙斌, 温刚. 中国北方干旱化的几个问题[J]. 气候与环境研究, 2002, 7(1): 22-29.]
[8] Ma Zhuguo, Fu Congbin.Decadal variations of arid and semi-arid boundary in China[J]. Chinese Journal of Geophysics, 2005, 48(3): 519-525.
[马柱国, 符淙斌. 中国干旱和半干旱带的10年际演变特征[J]. 地球物理学报, 2005,48(3): 519-525.]
[9] Zhao Jingchuan, Liu Shuhua.Research on the impact of vegetation change onland-atmosphere coupling strengthin northwest China[J]. Chinese Journal of Geophysics, 2015, 58(1):47-62.
[赵靖川, 刘树华. 植被变化对西北地区陆气耦合强度的影响[J]. 地球物理学报, 2015, 58(1):47-62.]
[10] Ma J, Chen L, He J, et al.Trends and periodicities in observed temperature, precipitation and runoff in a desert catchment: Case study for the Shiyang River Basin in northwestern China[J]. Water and Environment Journal, 2013, 27(1): 86-98.
[11] Gao S, Lu R, Qiang M, et al.Reconstruction of precipitation in the last 140 years from tree ring at south margin of the Tengger Desert, China[J]. Chinese Science Bulletin, 2005, 50(21): 2 487-2 492.
[12] Xiao F, Ling F, Du Y, et al.Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data[J]. Journal of Arid Land, 2013, 5(4): 452-464.
[13] Tan L, An Z, Huh C A, et al.Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries[J]. Scientific Reports, 2014, 4, doi:10.1038/srep06381.
[14] Cao B, Pan B, Wang J, et al.Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan River source, eastern Qilian Mountains, China[J]. Quaternary Research, 2014, 81(3): 531-537.
[15] Yatagai A.Interannual variation of summertime precipitation over the Qilian Mountains in Northern China[J]. Bulletin of Glaciological Research, 2007, 24: 1-11.
[16] Li Xia, Gao Yanhong, Wang Wanzhao, et al.Climate changes and applicability of GLDAS in the headwater of the Yellow River Basin[J].Advances in Earth Science, 2014,29(4):531-540.
[李霞,高艳红,王婉昭,等.黄河源区气候变化与GLDAS数据适用性评估[J].地球科学进展,2014,29(4):531-540.]
[17] Cheng Guodong, Xiao Honglang, Fu Bojie, et al.Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science, 2014, 29(4): 431-437.
[程国栋, 肖洪浪, 傅伯杰, 等.黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.]
[18] Wu Guanghe, Wang Naiang, Hu Shuangxi, et al.Physical Geography(Fourth Edition) [M]. Beijing: Higher Education Press, 2008.
[伍光和, 王乃昂,胡双熙, 等. 自然地理学(第四版)[M]. 北京: 高等教育出版社, 2008.]
[19] Huang Bingwei.Comprehensive physiographic regionalization of China(Draft)[J]. Chinese Science Bulletin,1959,4: 348-365.
[黄秉维. 中国综合自然区划草案[J]. 科学通报, 1959, 4: 348-365.]
[20] Li Jianping, Zeng Qingcun.A new monsoon index, its interannual variabil ity and relation with monsoon precipitation[J]. Climatic and Environmental Research,2005, 10(3): 351-365.
[李建平, 曾庆存. 一个新的季风指数及其年际变化和雨量的关系[J]. 气候与环境研究, 2005, 10(3): 351-365.]
[21] Zhu Qian’gen, Lin Jinrui, Shou Shaowen, et al.The Principle and Method of Synoptic (Third Edition)[M]. Beijing: Meteorological Press, 2007.
[朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理与方法(第三版)[M]. 北京: 气象出版社, 2007.]
[22] Li Wanli, Wang Keli, Fu Shenming, et al.The interrelationship between regional westerly index and the water vapor budget in northwest China[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 28-34.
[李万莉, 王可丽, 傅慎明, 等. 区域西风指数对西北地区水汽输送及收支的指示性[J]. 冰川冻土, 2008, 30(1): 28-34.]
[23] Wang Huijun, He Shengping.Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s[J]. Chinese Science Bulletin, 2012, 57(19): 1 713-1 718.
[王会军, 贺圣平. ENSO和东亚冬季风之关系在20世纪70年代中期之后的减弱[J]. 科学通报, 2012, 57(19): 1 713-1 718.]
[24] Qi Dongmei, Li Yueqing, Bai Yingying, et al.The definition of plateau summer monsoon index and analysis on its characteristics[J]. Plateau and Mountain Meteorology Research, 2012, 29(4): 1-9.
[齐冬梅, 李跃清, 白莹莹, 等. 高原夏季风指数的定义及其特征分析[J]. 高原山地气象研究, 2012, 29(4): 1-9.]
[25] Chen D, Cane M A, Kaplan A, et al.Predictability of El Niño over the past 148 years[J]. Nature, 2004, 428(6 984): 733-736.
[26] Ropelewski C F, Halpert M S.Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation[J]. Monthly Weather Review, 1987, 115(8): 1 606-1 626.
[27] Hurrell J W.Decadal trends in the North Atlantic oscillation[J]. Science, 1995, 269: 676-679.
[28] Guo Qiyun, Cai Jingning, Shao Xuemei, et al.Interdecadal variability of east-Asian summer monsoon and its impact on the climate of China[J]. Acta Geographica Sinca,2004, 58(4): 569-576.
[郭其蕴, 蔡静宁, 邵雪梅, 等. 东亚夏季风的年代际变率对中国气候的影响[J]. 地理学报, 2004, 58(4): 569-576.]
[29] He Lifu, Wu Bingyi, Mao Weixing.The interdecadal variability of Indian summer monsoon and the climate state shift in north China[J]. Journal of Tropical Meteorology, 2005, 21(3): 257-264.
[何立富, 武炳义, 毛卫星. 印度夏季风的年代际变化与我国北方的气候跃变[J]. 热带气象学报, 2005, 21(3): 257-264.]
[30] Fu Baopu.The effrcts of topography and elevation on precipitation[J]. Acta Geographica Sinca,1992, 47(4): 302-314.
[付抱璞. 地形和海拔高度对降水的影响[J]. 地理学报, 1992, 47(4): 302-314.]
[31] Zhang Jie, Li Dongliang, Wang Wen.Influence of terrain on precipitation in Qinghai-Tibet Plateau during summer monsoon[J]. Scientia Geographica Sinica, 2008, 28(2): 235-240.
[张杰, 李栋梁, 王文. 夏季风期间青藏高原地形对降水的影响[J]. 地理科学, 2008, 28(2): 235-240.]
[32] Zhang R H, Sumi A, Kimoto M.A diagnostic study of the impact of El Niño on the precipitation in China[J]. Advances in Atmospheric Sciences, 1999, 16(2): 229-241.
[33] Wang W C, Li K R.Precipitation fluctuation over semiarid region in Northern China and the relationship with El-Niño Southern Osciliation[J]. Journal of Climate,1990, 3(7): 769-783.
[34] Liu Huancai, Duan Keqin.Effects of north Atlantic oscillation on summer precipitation over the Tibetan Plateau[J].Journal of Glaciology and Geocryology,2012, 34(2): 311-318.
[刘焕才, 段克勤. 北大西洋涛动对青藏高原夏季降水的影响[J]. 冰川冻土, 2012, 34(2): 311-318.]
[35] Wang Yongbo, Shi Neng.Relation of north Atlantic Oscillation anomaly to China climate during 1951-1995[J]. Journal of Nanjing Institute of Meteorology,2001, 24(3): 315-322.
[王永波, 施能. 近45a冬季北大西洋涛动异常与我国气候的关系[J]. 南京气象学院学报, 2001, 24(3): 315-322.]
[36] Guo Qiyun.Relationship between the variations of east Asian winter monsoon and temperature anomalies in China[J]. Quarteriy Journai of Applled Meteoroiogy, 1994, 5(2): 218-225.
[郭其蕴. 东亚冬季风的变化与中国气温异常的关系[J]. 应用气象学报, 1994, 5(2): 218-225.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[9] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[10] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[11] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[12] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[13] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[14] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[15] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
阅读次数
全文


摘要