地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 78 -90. doi: 10.11867/j.issn.1001-8166.2015.01.0078

上一篇    下一篇

鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相
郑庆华 1, 2( ), 柳益群 1, *( )   
  1. 1.西北大学大陆动力学国家重点实验室/地质学系, 陕西 西安 710069
    2.中国石油股份长庆油田分公司勘探开发研究院/低渗透油气田勘探开发国家工程实验室, 陕西 西安 710018
  • 收稿日期:2014-06-23 修回日期:2014-12-01 出版日期:2015-03-05
  • 通讯作者: 柳益群 E-mail:272594012@qq.com;Liu-yiqun@263.net
  • 基金资助:
    教育部科技发展中心“高等学校博导基金项目”(编号:20106101110020);大陆动力学国家重点实验室(西北大学)重点基金项目“新疆北东部三塘湖地区二叠纪地幔热液喷流沉积及其形成机理”(编号:BJ08133-3)资助

The Diagenesis and Diagenetic Lithofacies of Tight Reservoir of Chang4+5 Member of Yanchang Formation in Huaqing Area, Ordos Basin

Qinghua Zheng 1, 2( ), Liu Yiqun 1( )   

  1. 1. Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
    2. Research Institute of Petroleum Exploration and Development, National Engineering Laboratory for Permeability Petroleum Exploration and Development, PetroChina Changqing Oilf1eld Company, Xi’an 710018, China
  • Received:2014-06-23 Revised:2014-12-01 Online:2015-03-05 Published:2015-01-20

鄂尔多斯盆地华庆地区延长组长4+5致密油层储量潜力巨大, 但储层成岩作用研究较为薄弱, 相对高孔高渗储层成因机理和分布规律不清, 严重制约着该区长4+5的勘探开发进程。通过常规薄片、铸体薄片、扫描电镜、电子探针、阴极发光、显微荧光、X-射线衍射、流体包裹体、高压压汞和常规物性等测试方法, 对华庆地区的长4+5储层成岩作用、成岩相及物性特征进行了研究。研究结果表明:研究区长4+5主要处于中成岩阶段A期, 铁方解石、石英及高岭石的胶结作用是造成储层低孔特低渗的根本原因;绿泥石膜胶结作用和早期油的充注有效保护了储层孔隙, 抑制了机械压实作用和胶结作用;长石碎屑的溶蚀作用有利于相对高孔高渗储层的形成。主要划分出绿泥石膜胶结残余粒间孔相、机械压实相、绿泥石膜胶结─长石溶蚀相和碳酸盐胶结相4类成岩相, 其中绿泥石膜胶结─长石溶蚀相为相对高孔高渗储层发育区, 一般面孔率大于6.0 %, 孔隙度大于16.0 %, 渗透率大于1.30×10-3 μm2, 主要分布在半深湖线附近且位于主砂带的水下分流河道微相和滑塌浊积水道微相砂体中部。综合研究表明, 沉积作用和成岩作用共同控制着相对高孔高渗储层的分布。

Though the prospective of reserves of tight oil reservoir of Chang 4+5 member of Yanchang Formation is great in Huaqing area, Ordos Bsin, but its speed of oil exploration and development has been much restricted much by weak reservoir diagenesis research. To study the characteristics of diagenesis, diageneticfacies and physical properties of reservoir of Chang 4+5 in Huaqing area, a series of analytic techniques were used, including polarized light microscope, casting slice, scanning electron microscope, electron probe microanalysis, cathodeluminescence, micro fluorescence, X-ray diffraction, fluid inclusion, high pressure mercury, physical properties, etc. The results showed that the ferrocalcite, quartz and kaolinite cementation caused the background of low porosity and ultra low permeability reservoir of Chang 4+5 reservoir in the study area, and the diagenetic stage belonged to the “A” middle now. Chlorite film cementation and early oil accumulation effectively protected pores and limited the mechanical compaction and the cementation. The intense dissolution of feldspar could greatly improve the reservoir porosity and cause the relatively high porosity and permeability reservoir. There are mainly divided into four kinds of diagenetic facies, including chlorite cementation residual intergranular pore facies, the mechanical compaction facies, chlorite cementation and feldspathic solution facies, carbonate cementation facies. The most favorable diagenetic facies is feldspathic solution facies, which mainly distributes in the middle sandbody of the fluxoturbidite and underwater distributary channel of the main sand belt adjacent the semi-deep lake shoreline, and it is favorable to the formation of relatively high porosity and permeability reservoir, of which surface porosity is more than 6.0%, porosity is more than 16.0 %, permeability is more than 1.30×10-3μm2. Comprehensive studies have shown that the combination of sedimentation and diagenesis controls the distribution of relatively high porosity and permeability reservoir.

中图分类号: 

图1 鄂尔多斯盆地华庆地区延长组综合柱状图
Fig.1 The synthetic histogram of Yanchang Formation in Huaqing area, Ordos Basin
图2 华庆地区长4+5砂岩岩石类型三角图
Fig.2 Triangular diagram showing classification of Chang 4+5 sandstone in Huaqing area
图3 显微镜下的华庆地区长4+5砂岩照片 (a)碎屑颗粒周围绿泥石膜发育, B233井, 长4+51, 1 931.95 m;(b)碎屑颗粒间沥青质普遍发育, 颗粒间线─点接触, B195井, 长4+51, 1 856.55 m;(c)叶片状绿泥石垂直于碎屑表面生长形成绿泥石膜, 石英自生加大不发育, B413井, 长4+51, 2 020.80 m;(d)黑云母绿泥石化, B168井, 长4+51, 1 928.74 m;(e)厚层绿泥石薄堵塞孔隙, B233井, 长4+51, 1 925.04 m;(f)颗粒表面丝缕状伊利石和粒间卷片状伊利石, B124井, 长4+51, 1 944.81 m;(g)粒间孔中似蜂窝状伊/蒙混层, B206井, 长4+51, 1 843.86 m;(h)叶片状绿泥石垂直于碎屑表面生长形成绿泥石膜, 铁方解石胶结不发育, B213井, 长4+51, 2 019.50 m;(i)铁方解石充填溶蚀孔和粒间孔, 少量铁白云石交代石英、长石、碎屑、铁方解石, B259井, 长4+52, 2 042.10 m;(j)阴极发光薄片下石英发蓝紫色光, 斜长石发暗蓝色、黄绿色光, 钾长石发亮蓝色, 铁方解石等碳酸盐胶结物发暗橙黄色光, W221井, 长4+51, 1 894.05 m;(k)长石完全溶蚀残余绿泥石膜形成的铸模孔, 其内充填少量自生石英颗粒, B413井, 长4+51, 2 000.64 m;(l)高岭石充填溶蚀孔或附近的粒间孔隙中, B279井, 长4+51, 1 699.58 m;(m)假六方板状集合体的自生高岭石, B124井, 长4+52, 1 963.43 m;(n)长石溶蚀形成大孔隙, B196井, 长4+51, 1 716.34 m;(o)长石沿解理方向溶蚀, B413井, 长4+51, 2 006.50 m;(p)碎屑颗粒内裂缝中充填伊利石, B195井, 长4+51, 1 854.50 m
Fig.3 Microscope photographs of Chang 4+5 sandstone in Huaqing area (a)Chlorite film is around clastic particles, Well B233, Chang 4+51, 1 931.95 m; (b)The asphalt widely develops between clastic particles which line or point contact, Well B195, Chang 4+51, 1856.55 m; (c)The lamellar chlorites vertically grow on the surface of clastic particles and develop to the chlorite membrane, and quartz overgrowth is not developed, Well B413, Chang 4+51, 2 020.80 m; (d)The chloritization of biotite, Well B168, Chang 4+51, 1 928.74 m; (e)Thick layer of chlorite blocks pore, Well B233, Chang 4+51, 1 925.04 m; (f)Silk thread illite grows on particle surface and the flaky illite grows in the intergranular pore, Well B124, Chang 4+51, 1 944.81 m; (g)Honeycomb structure illite smectite mixed layer clay is in the intergranular pore, Well B206, Chang 4+51, 1 843.86 m; (h)The lamellar chlorites vertically grow on the surface of clastic particles and develop the chlorite membrane, and ferrocalcite cementation is not developed, Well B213, Chang 4+51, 2 019.50 m; (i)Ferrocalcite fills dissolution and intergranular pore, and a small amount of quartz, feldspar, clastic constituents, ferrocalcite are distributed by ankerite, Well B259, Chang 4+52, 2 042.10 m; (j)Quartz glows blue purple light, plagioclase glows dark blue, yellow green light, potassium feldspar glows bright blue, carbonate cement(ferrocalcite, etc) glows dark orange light in the cathodoluminescence thin section, Well W221, Chang 4+51, 1 894.05 m;(k)The completely dissolution of feldspar remains chlorite membran and its mold pore with a small amount of quartz grain, Well B413, Chang 4+51, 2000.64 m;(l)Kaolinite fills dissolution pore and its nearby intergranular pore, Well B279, Chang 4+51, 1 699.58 m;(m)The aggregation of authigenic kaolinite presents false six party plate, Well B124, Chang 4+52, 1 963.43 m;(n)The large pore space are formed from feldspar dissolution, Well B196, Chang 4+51, 1 716.34 m;(o)The feldspar dissolution is along the direction of cleavage, Well B413, Chang 4+51, 2 006.50 m;(p)The illite is filled intragranular fracture of clastic particles, Well B195, Chang 4+51, 1 854.50 m
图4 华庆地区长4+5砂岩自生矿物含量及其与孔隙度交汇图 (a)绿泥石胶结物含量和碳酸盐胶结物含量交汇图;(b)绿泥石胶结物含量和硅质胶结物含量交汇图;(c)绿泥石胶结物含量与孔隙度交汇图;(d)碳酸盐胶结含量与孔隙度交汇图;(e)高岭石胶结物含量与孔隙度交汇图;(f)溶蚀孔含量与孔隙度交汇图
Fig.4 Plots of authigenic different mineral content and porosity of Chang 4+5 sandstone in Huaqing area (a)Contents of chlorite and carbonate cements intersection figure; (b) Contents of chlorite and siliceous intersection figure; (c)Contents of chlorite and porosity intersection figure; (d) Contents of carbonate cements and porosity intersection figure; (e)Contents of kaolinite cements and porosity intersection figure; (f)Contents of dissolved pore and porosity intersection figure
表1 华庆地区长4+5砂岩X─射线衍射分析
Table 1 The result of analysis of X-Ray Diffraction of Chang4+5 sandstone in Huaqing area
图5 鄂尔多斯盆地长4+5砂岩黑色沥青质显微荧光和激光拉曼光谱特征 (a)黑色沥青质发黄褐色荧光(红圈), 显微荧光×150, G239井, 长4+51, 2 540.9 m;(b)黑色沥青质的拉曼普峰, G239井, 长4+51, 2 540.9 m
Fig.5 Micro fluorescence and Laser Raman spectra of black albite of Chang 4+5 sandstone in Ordos Basin (a) Black albite glows weak yellow fluorescence(red cycle), micro fluorescence×150, Well G239, Chang 4+51, 2 540.9 m; (b) Laser Raman spectra of black albite, Well G239, Chang 4+51, 2 540.9 m
图6 偏光和荧光显微镜下的华庆地区长4+5砂岩流体包裹体照片 (a)石英自生加大边内侧盐水溶液包裹体, 单偏光×50, B207井, 长4+51, 1 819.59 m;(b)石英颗粒愈合微裂隙内盐水溶液包裹体, 单偏光×50, B206井, 长4+52, 1 880.41 m;(c)石英颗粒愈合微裂隙内盐水溶液及含液态烃有机包裹体共生, 单偏光×50, B207井, 长4+51, 1 809.23 m;(d)石英颗粒愈合微裂隙内含液态烃有机包裹体发弱黄色荧光, 显微荧光×50, B207井, 长4+51, 1 809.23 m
Fig.6 Polarized light and fluorescence microscopy photographs of fluid inclusion of Chang 4+5 sandstone in Huaqing area (a)Brine solution inclusions in quartz overgrowth, plane-polarized light×50, Well B207, Chang 4+51, 1 819.59 m;(b)Brine solution inclusions in micro crack of healing quartz particle, plane polarized light×50, Well B206, Chang 4+52, 1 880.41 m; (c) Brine solution and containing organic liquid hydrocarbon inclusions in micro crack of healing quartz particle, plane polarized light×50, Well B207, Chang 4+51, 1 809.23 m; (d)Inclusions which containing organic liquid hydrocarbon inclusions glow weak yellow fluorescence in micro crack of healing quartz particle, micro fluorescence ×50, Well B207, Chang 4+51, 1 809.23 m
图7 华庆地区长4+5流体包裹体均一温度分布直方图
Fig.7 The histogram of homogenization temperature of fluid inclusion of Chang 4+5 sandstone in Huaqing area
图8 华庆地区长4+5砂岩主要成岩作用序列
Fig.8 The main dagenetic array of Chang 4+5 sandstone in Huaqing area
图9 华庆地区长4+5 2成岩相平面图
Fig.9 Plane figure showing distribution of diagenetic facies of Chang 4+5 2 reservoir in Huaqing area
图10 华庆地区长4+5 1成岩相平面图
Fig.10 Plane figure showing distribution of diagenetic facies of Chang 4+5 1 reservoir in Huaqing area
[9] [钟大康, 周立建, 孙海涛, 等.储层岩石学特征对成岩作用及孔隙发育的影响绿泥石膜胶结—长石溶蚀相以鄂尔多斯盆地陇东地区三叠系延长组为例[J].石油与天然气地质, 2012, 6(33):890-899.]
[10] Grigsby J D.Origin and growth mechanism of authig enic chlorite in sandstones of the Lower Vicksburg Formation, South Texas[J]. Journal of Sedimentary Research, 2001, 71(1):27-36.
[11] Yao Jingli, Wang Qi, Zhang Rui, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone(upper triassic)of Huaqing area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1):72-79.
[姚泾利, 王琪, 张瑞, 等.鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义[J].沉积学报, 2011, 29(1):72-79.]
[12] Huang Sijing, Xie Lianwen, Zhang Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(3):273-281.
[黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报:自然科学版, 2004, 31(3):273-281.]
[13] Zhang Jinliang, Si Xueqiang, Liang Jie, et al. Diagenesis of lacustrine deltaic sandstones and its impact on reservoir quality[J].Sedimentologica Sinica, 2004, 22(2):225-233.
[张金亮, 司学强, 梁杰, 等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响[J].沉积学报, 2004, 22(2):225-233.]
[14] Liu Linyu, Qu Zhihao, Sun Wei, et al. Properties of clay mineral of clastic rock in Shanshan Oil Field, Xinjiang[J]. Northwest University(Natural Science Edition), 1998, 28(5):443-446.
[刘林玉, 曲志浩, 孙卫, 等.新疆鄯善油田碎屑岩中的粘土矿物特征[J].西北大学学报:自然科学版, 1998, 28(5):443-446.]
[15] Liu Yiqun, Li Wenhou.Diagenetic characteristics and porosity evolution of the Oil-Bearing Arkoses in the Upper Triassic in the Eastern Shaan-Gan-Ning Basin[J]. Sedimentologica Sinica, 1996, 14(3):87-96.
[柳益群, 李文厚. 陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报, 1996, 14(3):87-96.]
[16] Zhang Nai, Tian Zuoji, Leng Yingying, et al. Raman characteristics of hydrocarbon and hydrocarbon inclusions[J]. Science in China (Series D), 2007, 37(7): 900-907.
[张鼐, 田作基, 冷莹莹, 等.烃和烃类包裹体的拉曼特征[J].中国科学:D辑, 2007, 37(7): 900-907.]
[17] Yuan Zhen, Li Wenhou, Guo Yanqin.Effects of oil emplacement on diagenetic evolution of sandstone reservoir in Yanchang Formation, Southeastern Ordos Basin[J].Geological Journal of China Universities, 2011, 17(4):594-604.
[袁珍, 李文厚, 郭艳琴.鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响[J].高校地质学报, 2011, 17(4):594-604.]
[18] Yao Jingli, Wang Qi, Zhang Rui, et al. Origin and spatial distribution of carbonate cements in Yanchang Fm. (Triassic) sandstones within the lacustrine center of Ordos Basin, NW China[J].Natural Gas Geoscience, 2011, 22(6):943-950.
[姚泾利, 王琪, 张瑞, 等.鄂尔多斯盆地中部延长组砂岩中碳酸盐胶结物成因与分布规律研究[J].天然气地球科学, 2011, 22(6):943-950.]
[19] Huang Sijing, Huang Keke, Feng Wenli, et al. Mass exchanges among feldspar, kaolinite and lillite and their influences on secondary porosity formation in clastic diagenesis—A case study on the upper Paleozonic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38(5):498-506.
[黄思静, 黄可可, 冯文立, 等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学, 2009, 38(5):498-506.]
[20] Zhong Dakang, Zhu Haihua, Sun Haitao, et al. Diagenesis and porosity evolution of sandstones in Longdong area[J]. Earth Science Frontiers, 2013, 20(2):61-68.
[1] Yang Hua.Deposition System and Oil Accumulation Research of Yanchang Formation in Triassic, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2004.
[杨华. 鄂尔多斯盆地三叠系延长组沉积体系及含油性研究[D].成都:成都理工大学, 2004.]
[2] Yan Pengcheng.The Research on Comprehensive Evaluation and Reservoir Characteristics of Chang 4 and Chang 5 Oil-bearing Sets of Yanchang Formationin Baibao Area[D]. Xi’an:Northwest University, 2009.
[严鹏程. 白豹地区长4+5油层组储层特征及综合评价研究[D].西安:西北大学, 2009.]
[3] Li Daopin, Luo Diqiang, Liu Yufen, et al.Theory of Low Permeability Reservoir[M]. Beijing: Petroleum Industry Press, 1997: 4-50.
[李道品, 罗迪强, 刘雨芬, 等. 低渗透砂岩油田开发[M].北京: 石油工业出版社, 1997: 4-50.]
[4] Beard D C, Weyl P C.Influence of texture on porosity and permeability of unconsolidated sand[J].AAPG Bulletin, 1973, 57(2):349-369.
[5] Liang Xiaowei, Gao Wei, Wang Fang.Quantitative characterization of diagenesis and pore evolution of super low permeability reservoirs—An example from Jiyuan area in Ordos Basin[J]. Xinjiang Petroleum Geology, 2010, 31(2):150-153.
[梁晓伟, 高薇, 王芳. 特低渗透储集层成岩作用及孔隙演化定量表征绿泥石膜胶结—长石溶蚀相以鄂尔多斯盆地姬塬地区为例[J].新疆石油地质, 2010, 31(2):150-153.]
[6] Fu Jing, Wu Shenghe, Fu Jinhua, et al. Research on quantitative diagenetic facies of the Yanchang Formation in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2):86-97.
[20] [钟大康, 祝海华, 孙海涛, 等.鄂尔多斯盆地陇东地区延长组砂岩成岩作用及孔隙演化[J].地学前缘, 2013, 20(2):61-68.]
[21] Hu Zongquan, Zhu Xiaomin.Diageneses and pore evolution of Jurassic reservoir in northwestern edge of Junggar Basin[J]. School of Resource and Information Technology in the University of Petroleum, 2002, 26(3):16-19.
[胡宗全, 朱筱敏.准噶尔盆地西北缘侏罗系储集层成岩作用及孔隙演化[J].石油大学学报:自然科学版, 2002, 26(3):16-19.]
[22] Liu Menghui, Zhao Chenglin.Clastic Reservoir Diagenetic Evolution Pattern[M].Dongying: Petroleum University Publishing House, 1993:28.
[刘孟慧, 赵澄林.碎屑岩储集层成岩演化模式[M].东营:石油大学出版社, 1993:28.]
[23] Liu Dehan, Xiao Xianming, Tian Hui, et al. Fluid inclusion types and their teological tignificance in tetroliferous Tasins[J]. Oil & Gas Geology, 2008, 29(4):491-501.
[刘德汉, 肖贤明, 田辉, 等.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质, 2008, 29(4):491-501.]
[24] Zhao Yanjun, Chen Honghan.The relationship between fluorescence colors of oil inclusions and their maturities[J]. Earth Science—Journal of China University of Geoscience, 2008, 33(1):91-96.
[赵艳军, 陈红汉.油包裹体荧光颜色及其成熟度关系[J].地球科学——中国地质大学学报, 2008, 33(1):91-96.]
[25] SY/T5477-2003.The Division of Diagenetic Stages in Clastic RocksSY/T5477-2003.The Division of Diagenetic Stages in Clastic Rocks[S]. 2003. [SY/T5477-2003. 中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分[S].2003.]
[26] Zou Caineng, Tao Shizhen, Zhou Hui, et al. Genesis classification and evaluation method of diagenetic facies[J]. Petroleum Exploration and Development, 2008, 35(5):526-540.
[邹才能, 陶士振, 周慧, 等. 成岩相的形成、分类与定量评价方法[J].石油勘探与开发, 2008, 35(5):526-540.]
[27] Lai Jin, Wang Guiwen, Wang Shu’nan, et al. Research status and advances in the diagenetic facies of clastic reservoirs[J]. Advances in Earth Science, 2013, 28(1): 39-50.
[赖锦, 王贵文, 王书南, 等.碎屑岩储层成岩相研究现状及进展[J].地球科学进展, 2013, 28(1):39-50.]
[28] Zhang Jinliang, Zhang Penghui, Xie Jun, et al. Diagenesis of clastic reservoirs: Advances and prospects[J].Advances in Earth Science, 2013, 28(9): 957-967.
[张金亮, 张鹏辉, 谢俊, 等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展, 2013, 28(9): 957-967.]
[6] [付晶, 吴胜和, 付金华, 等.鄂尔多斯盆地陇东地区延长组储层定量成岩相研究[J].地学前缘, 2013, 20(2):86-97.]
[7] Tian Jianfeng, Liu Chiyang, Wang Guicheng, et al. Alkaline dissolution of sandstone in the Triassic Yangchang Formation in the Ordos Basin[J].Earth Science—Journal of China University of Geoscience, 2011, 36(1):103-110.
[田建锋, 刘池洋, 王桂成, 等.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用[J].地球科学——中国地质大学学报, 2011, 36(1):103-110.]
[8] Wang Hongyu, Fan Tailiang, Xiao Yingying, et al. Effect of tuffaceous components on physical property of sandstone reservoir[J]. Petrolei Sinica, 2010, 31(3):432-439.
[王宏语, 樊太亮, 肖莹莹, 等.凝灰质成分对砂岩储集性能的影响[J].石油学报, 2010, 31(3):432-439.]
[9] Zhong Dakang, Zhou Lijian, Sun Haitao, et al. Influences of petrologic example from the Triassic features on diagenesis Yanchang Formation in and pore development:An Longdong area, Ordos Basin[J].Oil & Gas Geology, 2012, 6(33):890-899.
[1] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[2] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[5] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[6] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[7] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[8] 曾溅辉, 杨智峰, 冯枭, 乔俊程, 张忠义. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651-661.
[9] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[10] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[11] 赖锦,王贵文,王书南,郑懿琼,吴恒,张永辰. 碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展, 2013, 28(1): 39-50.
[12] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[13] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[14] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[15] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
阅读次数
全文


摘要