地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 17 -25. doi: 10.11867/j.issn.1001-8166.2015.01.0017

上一篇    下一篇

海洋碳封存技术:现状、问题与未来
王江海( ), 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平   
  1. 中山大学海洋学院广东省海洋资源与近岸工程重点实验室, 广东 广州510006
  • 收稿日期:2014-09-19 修回日期:2014-12-08 出版日期:2015-03-05
  • 基金资助:
    国家重大科学计划项目“全球变暖下的海洋响应及其对东亚气候和近海储碳的影响”下属第四课题“黑潮长期变异及其对中国近海储碳的影响”(编号: 2012CB956004)资助

Marine Carbon Sequestration: Current Situation, Problems and Future

Jianghai Wang( ), Xianxian Sun, Xiaoming Xu, Choufei Wu, Juan Peng, Jianping Yuan   

  1. Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006
  • Received:2014-09-19 Revised:2014-12-08 Online:2015-03-05 Published:2015-01-20

过度使用化石能源致使过量排放以CO2为主的温室气体, 并增强全球气候变暖的趋势。碳封存是有效缓解大气中CO2浓度激增的重要手段。海洋碳封存是一种新兴的碳减排理念, 其封存主体是海洋水柱和海底沉积物, 它们不但封存潜力巨大, 而且与陆地碳封存相比安全性更高。阐述了海洋碳封存的技术原理与封存机制、海洋碳封存的潜力与封存时间、影响海洋碳封存的主要因素、海上CO2注入技术、CO2泄漏对海洋生物的影响以及CO2泄漏的监测技术等, 并对未来海洋碳封存的发展前景进行了展望, 指出了未来海洋碳封存技术的主要研究热点。

Abuse of fossil energy resources results in the excessive discharge of greenhouse gases, especially CO2, enhancing the trend of global climate warming. Carbon sequestration is an important method to lower the increasing rate of CO2 concentration in the atmosphere. Marine carbon sequestration is a novel idea for reducing CO2 emission, and its reservoir mainly includes seawater and submarine sediment, which not only possess a great potential capacity of carbon sequestration, but also have high safety in relation to continental reservoirs. In this paper, we expounded the technique principle and mechanisms of marine carbon sequestration, potential capacity and time duration of marine carbon sequestration, main factors influencing marine carbon sequestration, CO2 injection technique, impacts on marine biota from over emission of CO2 and technique monitoring the leakage of CO2. Finally, a prospect of marine carbon sequestration was proposed, and its hot topics were accordingly pointed out.

中图分类号: 

表1 主要国际碳封存项目
Table 1 Main international CCS projects
图1 海洋碳封存示意图(根据文献[ 4 , 8 , 17 ]修改) a和b:将CO2注入到浅至中层时, CO2具有浮力;c:当CO2注入深度大于3 000 m时, 因其密度比海水大而下沉, 形成碳湖;d:注入密度大于海水的、由CO2水合物与海水组成的膏状混合物;e:将CO2注入至HFZ带;f:将CO2注入至HFZ带与NBZ带的叠合区
Fig. 1 Schematic diagram illustratingthe carbon sequestration in oceans(modified after references [ 4 , 8 , 17 ]) a and b: CO2 is injected into the shallow-intermediate layer, where it is buoyant; c: CO2 is injected into the layer with the depth of more than 3 000 m, where CO2 is denser than seawater, and it will sink to form a lake; d: a paste-like and denser-than-seawater composite of CO2 hydrate and seawater is extruded; e: CO2 is injected into the HFZ zone; and f: CO2 is injected into the HFZ and NBZ zones.
表2 海洋碳封存与陆地碳封存的对比
Table 2 Comparison of the carbon sequestration in oceans and lands
[1] Stocker T F, Qin D, Plattne G K, et al.Climate change 2013: The physical science basis[M]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[2] Arce G L A F, Carvalho J J A, Nascimento L F C. A time series sequestration and storage model of atmospheric carbon dioxide[J]. Ecological Modeling, 2014, 272: 59-67.
[3] Voormeij D A, Simandl G J.Geological, ocean, and mineral CO2 sequestration options: A technical review[J]. Geoscience Canada, 2004, 31(1): 11-22.
[4] Metz B, Davidson O, De Coninck H C, et al. IPCC Special Report On Carbon Dioxide Capture And Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2005.
[5] Geibert W, Assmy P, Bakker D C E, et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3007.
[6] Köhler P, Abrams J F, Völker C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1), doi:10.1088/1748-932618/1/014009.
[7] Sun Shu.Geological problems of CO2 underground storage and its significance on mitigating climate change[J]. China Basic Science, 2006, 8(3): 17-22.
[孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J]. 中国基础科学, 2006, 8(3): 17-22.]
[8] Li L, Zhao N, Wei W, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130.
[9] Kovscek A R, Wang Y.Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation[J]. Energy Conversion and Management, 2005, 46(11): 1 920-1 940.
[10] Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[11] Hao Yanjun, Yang Dinghui.Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research[J].Progress in Geophysics, 2012, 27(6): 2 369-2 383.
[郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J].地球物理学进展, 2013, 27(6): 2 369-2 383.]
[12] Wang Jianxiu, Wu Yuanbin, Yu Haipeng.Review of the technology for sequestration of carbon dioxide[J]. Chinese Journal of Underground Space and Engineering, 2013, 1: 81-90.
[王建秀, 吴远斌, 于海鹏. 二氧化碳封存技术研究进展[J]. 地下空间与工程学报, 2013, 1: 81-90.]
[13] Ridgwell A, Rodengen T J, Kohfeld K E.Geographical variations in the effectiveness and side effects of deep ocean carbon sequestration[J]. Geophysical Research Letters, 2011, 38(17): L17610, doi:10.1029/2011GL048423.
[14] Blondes M S, Schuenemeyer J H, Olea R A, et al. Aggregation of carbon dioxide sequestration storage assessment units[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(8): 1 839-1 859.
[15] Xue Liang, Yu Weidong, Ning Chunlin, et al. Advances in sea surface partial pressure of CO2 time series studies[J]. Advances in Earth Science, 2013, 28(8): 859-865.
[薛亮, 于卫东, 宁春林, 等. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.]
[16] Matter J M, Broecker W S, Gislason S R, et al. The CarbFix Pilot Project—Storing carbon dioxide in basalt[J]. Energy Procedia, 2011, 4: 5 579-5 585.
[17] Adams E E, Caldeira K.Ocean storage of CO2[J]. Elements, 2008, 4(5): 319-324.
[18] Williamson P, Turley C.Ocean acidification in a geoengineering context[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1 974): 4 317-4 342.
[19] Marchetti C. On geoengineering and the CO2 problem[J]. Climate Change, 1977, 1: 59-68.
[20] Socolofsky S A, Bhaumik T. Dissolution of direct ocean carbon sequestration plumes using an integral model approach[J]. Journal of Hydraulic Engineering, 2008, 134(11): 1570-1578.
[21] Smyth R C, Meckel T A.Best management practices for subseabed geologic sequestration of carbon dioxide[C]// Oceans.IEEE, 2012: 1-6.
[22] Qanbari F, Pooladi-Darvish M, Tabatabaie S H, et al. CO2 disposal as hydrate in ocean sediments[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 139-149.
[23] Rehder G, Kirby S H, Durham W B, et al. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 285-292.
[24] Tohidi B, Yang J, Salehabadi M, et al. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2[J]. Environmental Science & Technology, 2010, 44(4): 1 509-1 514.
[25] Golomb D, Pennell S, Ryan D, et al. Ocean sequestration of carbon dioxide: Modeling the deep ocean release of a dense emulsion of liquid CO2-in-water stabilized by pulverized limestone particles[J]. Environmental Science & Technology, 2007, 41(13): 4 698-4 704.
[26] Lee S, Liang L, Riestenberg D, et al. CO2 hydrate composite for ocean carbon sequestration[J]. Environmental Science & Technology, 2003, 37(16): 3 701-3 708.
[27] Li Qi, Liu Guizhen, Zhang Jian, et al. Status and suggestion of environmental monitoring for CO2 geological storage[J]. Advances in Earth Science, 2013, 28(6): 718-727.
[李琦, 刘桂臻, 张建, 等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.]
[28] Matsumoto K, Mignone B K.Model simulations of carbon sequestration in the northwest Pacific by direct injection[J]. Journal of Oceanography, 2005, 61(4): 747-760.
[29] Masuda Y, Yamanaka Y, Sasai Y.Optimization of the horizontal shape of CO2 injected domain and the depths of release in moving-ship type CO2 ocean sequestration[J]. Journal of Marine Science and Technology, 2013, 18(2): 220-228.
[30] Masuda Y, Yamanaka Y, Sasai Y, et al. Site selection in CO2 ocean sequestration: Dependence of CO2 injection rate on eddy activity distribution[J]. International Journal of Greenhouse Gas Control, 2009, 3(1): 67-76.
[31] Xue M, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3/4): 143-165.
[32] Lackner K S, Brennan S.Envisioning carbon capture and storage: Expanded possibilities due to air capture, leakage insurance, and C-14 monitoring[J]. Climatic Change, 2009, 96(3): 357-378.
[33] Zhang Hongxiang, Li Xiaochun, Wei Ning.The major technology track and analysis about carbon dioxide capture and storage[J]. Advances in Earth Science, 2010, 25(3): 335-340.
[张鸿翔, 李小春, 魏宁. 二氧化碳捕获与封存的主要技术环节与问题分析[J]. 地球科学进展, 2010, 25(3): 335-340.]
[34] Hammer K M, Pedersen S A.Deep-water prawn Pandalus borealis displays a relatively high pH regulatory capacity in response to CO2-induced acidosis[J]. Marine Ecology, 2013, 492: 139-151.
[35] House K Z, Schrag D P, Harvey C F, et al. Permanent carbon dioxide storage in deep-sea sediments[J]. Proceedings of the National Academy of Sciences, 2006, 103(33): 12 291-12 295.
[36] Levine J S, Matter J M, Goldberg D, et al. Gravitational trapping of carbon dioxide in deep sea sediments: Permeability, buoyancy, and geomechanical analysis[J]. Geophysical Research Letters, 2007, 34(24): L24703, doi:10.1029/2007GL031560.
[37] Koide H, Shindo Y, Tazaki Y, et al. Deep sub-seabed disposal of CO2—The most protective storage[J]. Energy Conversion and Management, 1997, 38: S253-S258.
[38] Eccles J K, Pratson L.Global CO2 storage potential of self-sealing marine sedimentary strata[J]. Geophysical Research Letters, 2012, 39(19): L19604, doi:10.1029/2012GL053758.
[39] Slagle A L, Goldberg D S.Evaluation of ocean crustal sites 1256 and 504 for long-term CO2 sequestration[J]. Geophysical Research Letters, 2011, 38(16):L16307, doi:10.1029/2011/GL048613.
[40] Prasad P S R, Sarma D S, Charan S N. Mineral trapping and sequestration of carbon-dioxide in deccan basalts: SEM, FTIR and raman spectroscopic studies on secondary carbonates[J]. Journal of the Geological Society of India, 2012, 80(4): 546-552.
[41] Gislason S R, Oelkers E H.Carbon storage in basalt[J]. Science, 2014, 344(6 182): 373-374.
[42] Goldberg D S, Takahashi T, Slagle A L.Carbon dioxide sequestration in deep-sea basalt[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9 920-9 925.
[43] Li Zhiwei.The Analysis and Control of Long-term Stability of the CO2 Geological Sequestration of Salt Water Layer [D]. Beijing: Beijing Jiaotong University, 2012.
[李志伟. 咸水层CO2地质封存的长期稳定性分析及控制[D]. 北京:北京交通大学, 2012.]
[44] Goldberg D S, Lackner K S, Han P, et al. Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau[J]. Environmental Science & Technology, 2013, 47(13): 7 521-7 529.
[45] Schrag D P.Storage of carbon dioxide in offshore sediments[J]. Science, 2009, 325(5 948): 1 658-1 659.
[46] Li Q, Wu Z, Li X.Prediction of CO2 leakage during sequestration into marine sedimentary strata[J]. Energy Conversion and Management, 2009, 50(3): 503-509.
[47] Goldberg D, Slagle A L.A global assessment of deep-sea basalt sites for carbon[J].Energy Procedia, 2009, 1(1): 3 675-3 682.
[48] Marieni C, Henstock T J, Teagle D A H. Geological storage of CO2 within the oceanic crust by gravitational trapping[J]. Geophysical Research Letters, 2013, 40(23): 6 219-6 224.
[49] Shaffer G.Long-term effectiveness and consequences of carbon dioxide sequestration[J]. Nature Geoscience, 2010, 3(7): 464-467.
[50] de Orte M R, Lombardi A T, Sarmiento A M, et al. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison[J]. Marine Environmental Research, 2014, 96: 136-144.
[51] de Orte M R, Sarmiento A M, Basallote M D, et al. Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations [J]. Science of the Total Environment, 2014, 470/471: 356-363.
[52] de la Haye K L, Spicer J I, Widdicombe S, et al. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean[J]. Journal of Experimental Marine Biology and Ecology, 2012, 412: 134-140.
[53] Kita J, Kikkawa T, Asai T, et al. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica[J]. Marine Pollution Bulletin, 2013, 73(2): 402-408.
[54] Kamenos N A, Burdett H L, Aloisio E, et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification[J]. Global Change Biology, 2013, 19(12): 3 621-3 628.
[55] Spicer J I, Widdicombe S. A cute extracellular acid-base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO2 release[J]. Science of the Total Environment, 2012, 427/428: 203-207.
[56] Shitashima K, Maeda Y, Koike Y, et al. Natural analogue of the rise and dissolution of liquid CO2 in the ocean[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 95-104.
[57] Shitashima K, Maeda Y, Ohsumi T.Development of detection and monitoring techniques of CO2 leakage from seafloor in sub-seabed CO2 storage[J]. Applied Geochemistry, 2013, 30: 114-124.
[58] Caramanna G, Fietzek P, Maroto-Valer M.Monitoring techniques of a natural analogue for sub-seabed CO2 leakages[J]. Energy Procedia, 2011, 4: 3 262-3 268.
[59] Payán M C, Verbinnen B, Galan B, et al. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment[J]. Environmental Pollution, 2012, 162: 29-39.
[60] Jiang X, Akber Hassan W A, Gluyas J. Modelling and monitoring of geological carbon storage: A perspective on cross-validation[J]. Applied Energy, 2013, 112: 784-792.
[1] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[2] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[3] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[4] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[5] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[6] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[7] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[8] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[9] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[10] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[11] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[12] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[13] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[14] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[15] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
阅读次数
全文


摘要