地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 1055 -1064. doi: 10.11867/j.issn.1001-8166.2014.09.1055

上一篇    下一篇

南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟
孙运宝( ), 赵铁虎, 秦柯   
  1. 国土资源部海洋油气资源与环境地质重点实验室,青岛海洋地质研究所,山东 青岛266071
  • 收稿日期:2014-05-28 修回日期:2014-08-25 出版日期:2014-09-10
  • 基金资助:
    中国博士后基金项目“南海神狐海域水合物储层地球物理响应特征数值模拟”(编号:2012M521296);中国地质调查局国家专项工作项目“天然气水合物勘查技术研发”(编号:GZH201100308)资助

Numerical Simulation of Overpressure of Shallow Water Flow in Baiyun Sag of the Northern South China Sea

Yunbao Sun( ), Tiehu Zhao, Ke Qin   

  1. Key laboratory of Marine Hydrocarbon Resource and Geology, Qingdao Institute of Marine Geology, Qingdao 266071,China
  • Received:2014-05-28 Revised:2014-08-25 Online:2014-09-10 Published:2014-09-10

深水超压是制约深水油气开发的重要问题,其中浅水流是对深水钻井最具破坏力的一种地质灾害。结合南海北部陆坡最新采集的高分辨率二维和三维地震资料,采用基于压实模型的流体压力模拟方法,通过井震联合分析,建立地震属性与岩石物性的关系,对研究区现今压力场状态进行模拟,获取了有效应力和超压系数等参数,探讨了沉积压实作用下的浅水流演化过程。通过模拟发现浅水流发育区的水动力特征与研究区的沉积模式密切相关,低渗透率地层的沉积物加载导致现今压力场具有明显的低有效应力异常和高超压系数,而如果仅考虑由沉积压实作用,现有的沉积速率尚不足以维持持续地超压来造成高风险的浅水流灾害,但其泄压过程也是个漫长的阶段。

Overpressure in the deepwater basin has become a challenge, which constrains the development of oil and natural gas industry and is a global problem. Drilling risks associated with shallow water flow have received the most attention. High resolution seismic data in the northern South China Sea were acquired by the China Geology Survey in 2006. Detailed studies of this region reveal the presence of overpressured sands, which may cause the shallow water flow hazard. By combining the seismic data and logging, we created a mathematical model based on compaction theory and established relationship between the velocity and porosity, density and effective stress. The P-velocity was transformed to effective stress and overpressure ration. The simulating results show that the overpressure ratio is 0 at the seafloor, which indicates that there is no overpressure, or the fluid pressure is hydrostatic. The value of the overpressure ratio in the interest zone, which responds to the deepwater channel depositional system in Baiyun Sag, Pearl River Mouth Basin, is higher and increases with depth in deeper sediments. After 10 ka, the value becomes lower, the overpressure seems to be released, which corresponds to the formers’ achievement in pressure research.

中图分类号: 

图1 研究区位置图 (a)南海北部陆坡白云凹陷区域位置图;(b)研究区海底地形图(据文献[28]修改)
Fig.1 the location of the study area (a) the location of the Baiyun Sag at the continental slope of northern South China Sea; (b) the 3D bathymetric map in study area(modified from reference [28])
图2 浅水流潜在区地震剖面及简化模型 (a)地震剖面;(b)波阻抗反演剖面;(c)速度剖面;(d)地质模型
Fig.2 Seismic profile including shallow water flow sands and simplified 2D model (a) Seismic profile; (b) Acoustic impedance section; (c) Velocity section;(d) 2D model with parameters
表1 模型恒定参数值
Table1 Simulation constants
图3 SH2井拟合正常压实情况下获取的参考孔隙度和初始压缩系数
Fig.3 Fitting results of the reference porosity and bulk compressibility from SH2 under normal compaction
图4 孔隙度剖面 (a)测线孔隙度剖面;(b)孔隙度异常剖面
Fig.4 Porosity profile (a) Porosity profile of line; (b) Abnormal porosity differential
图5 SH2井的地层密度值
Fig.5 Density logging fitting result from SH2
图6 有效应力剖面 (a)现今有效应力;(b)有效应力异常剖面;(c)10ka后有效应力;(d)10ka有效应力异常剖面
Fig.6 Effective stress profile ( a)Effective stress and (b)abnormal effective stress differential profile from the 2-D model nowdays; (c)Effective stress and (d)the differential profile from the 2-D model after 10 ka of simulation
图7 超压系数剖面 (a)现今超压系数;(b)超压系数异常剖面;(c)10ka后超压系数;(d)10ka超压系数异常剖面
Fig.7 overpressure ratio profile (a) Overpressure ratio and(b) overpressure ratio differential profile from the 2-D model nowdays;(c) Overpressure ratio and (d) the differential profile from the 2-D model after 10 ka of simulation
[1] Kvalstad T, Nadim F, Harbitz C. Deepwater geohazards: Geotechnical concerns and solutions[C]∥Proceedings 33rd Offshore Technology Conference, OTC Paper 12195. Houston, 2001.
[2] Bruce R, Shipp R. Guidelines for drill site selecion and near surface drilling hazard surveys[C]∥Interim Pollution Prevention and Safety Panel, Integrated Ocean Drilling Program,2003.
[3] Alberty M, Hafle M, Ming J C, et al. Mechanisms of shallow water flow and drilling practices for intervention[C]∥Proceedings of Offshore Technology Conference. Houston, Texas, 1997.
[4] Joe F, George H. Deep star’s evaluation of shallow water flow problems in the gulf of Mexico[C]∥Proceedings of Offshore Technology Conference. Houston, Texas, 1997.
[5] Liu Zhibin, Hao Zhao, Wu Xiangyang. Shallow water flow hazard: A challenge in deepwater drilling[J]. Progress in Geophysics, 2008, 23(2): 552-558.
刘志斌, 郝召, 伍向阳. 深水钻探面临的挑战:浅水流灾害问题[J]. 地球物理学进展,2008,23(2):552-558.
[6] Dong Dongdong, Zhao Hanqing, Wu Shiguo, et al. SWF problem in deepwater drilling and its geophysical detection techniques[J]. Journal of Marine Scinece Bulletin, 2007, 26(1):114-120.
董冬冬, 赵汗青, 吴时国,等. 深水钻井中浅水流灾害问题及其地球物理识别技术[J]. 海洋通报,2007,26(1):114-120.
[7] Bruce B, Borel R, Bowers G. Well planning for SWF and overpressures at the Kestrel well[J]. The Leading Edge, 2002, 21(7):669-671.
[8] McConnell D. Optimizing deepwater well locations to reduce the risk of shallow waterflow using high resolution 2D and 3D seismic data[C]∥Proceedings of Offshore Technology Conference.Houston, Texas, 2000.
[9] Mallick S, Dutta N. Shallow water flow prediction using prestack waveform inversion of conventional 3D seismic data and rock modeling[J]. The Leading Edge, 2002, 21(7): 675-680.
[10] Huffman A, Castagna J. The petrophysical basis for shallow waterflow prediction using muticomponent seismic data[J]. The Leading Edge, 2001, 20(9): 1 030-1 052.
[11] Ostermeier R, Pelletier J, Winker C, et al. Dealing with shallow water flow in the deepwater Gulf of Mexico[J]. The Leading Edge, 2002, 21(7): 660-668.
[12] Ostermeier R, Pelletier J, Winker C, et al. Dealing with shallow-water flow in the deepwater Gulf of Mexico[C]∥ Proceedings of Offshore Technology Conference, 2000.
[13] Bellotti P, Giacca D. Seismic data can detect overpressures in deep drilling[J]. Oil and Gas Journal, 1978, 76(34): 47-52.
[14] Bredehoeft J, Hanshaw B. On the maintenance of anomalous fluid pressures I, thick sedimentary sequences[J]. Geological Society of America Bulletin, 1968, 79: 1 097-1 106.
[15] Bethke C, Corbet T. Linear and nonlinear solutions for one-dimensional compaction flow in sedimentary basins[J]. Water Resources Research,1988, 24: 461-467.
[16] Palciauskas V, Domenico P. Fluid pressures in deforming rocks[J]. Water Resources Research, 1989, 25: 203-213.
[17] Audet D, Fowler A. A mathematical model for compaction in sedimentary basins[J]. Geophysics Journal International, 1992, 110: 577-590.
[18] Fowler A, Yang X. Fast and slow compaction in sedimentary basins[J]. Journal of Applied Mathematics, 1998, 59: 365-385.
[19] Chen Z, Ewing R, Lu H, et al. Integrated two-dimensional modeling of fluid flow and compaction in a sedimentary basin[J]. Computational Geosciences, 2002, 6: 545-564.
[20] Gordon D, Flemings P. Generation of overpressure and compaction-driven flow in a Plio-Pleistocene growth-faulted basin, Eugene Island 330, offshore Louisiana[J]. Basin Research, 1998, 10: 177-196.
[21] Harrison W, Summa L. Paleohydrology of the Gulf of Mexico Basin[J]. American Journal of Science, 1991, 291:109-176.
[22] Luo X, Vasseur G. Contribution of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J]. American Association of Petroleum Geologists Bulletin, 1992, 76: 1 550-1 559.
[23] Hu Zuowei, Li Yun, Huang Sijing, et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Science, 2012,27(1):14-25.
胡作维,李云,黄思静,等. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展,2012,27(1):14-25.
[24] Pang Xiong,Chen Changmin,Peng Dajun,et al. The Pearl River Deepwater Fan System & Petroleum in South China Sea[M]. Beijing:Science Press, 2007.
庞雄,陈长民,彭大钧,等. 南海珠江深水扇系统及油气[M]. 北京:科学出版社,2007.
[25] Shi Wanzhong,Chen Honghan, Chen Changmin, et al. Modelling of pressure evolution and hydrocarbon migration in the Baiyun Depression, Pearl River Mouth Basin, China[J]. Earth Science—Journal of China University of Geosciences, 2006, 31(2): 229-236.
石万忠, 陈红汉, 陈长民,等. 珠江口盆地白云凹陷地层压力演化与油气运移模拟[J]. 地球科学——中国地质大学学报,2006,31(2):229-236.
[26] Wang Lifeng, Sha Zhibin, Liang Jinqiang, et al. Analysis of gas hydrate absence induced by the late-stage diaper domination in the borehole SH5 of Shenhu area[J]. Geoscience, 2010, 24(3): 450-456.
王力峰,沙志彬,梁金强,等. 晚期泥底辟控制作用导致神狐海域SH5钻位未获水合物的分析[J].现代地质,2010,24(3):450-456.
[27] Sun Y B, Wu S G, Dong D D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311/314: 32-40.
[28] He Min, Zhu Ming, Wang Ruiliang, et al. The discussion of time-depth conversion methods in the Baiyun deepwater rough seafloor area[J]. Progress in Geophysics, 2007, 22(3):966-971.
何敏, 朱明, 汪瑞良,等. 白云深水崎岖海底区时深转换方法探讨[J]. 地球物理学进展, 2007, 22(3): 966-971.
[29] Wang Peng, Zhong Guangfa. Applications of rock physics models to the deep-sea sediment drift at ODP site 1144, Northern South China Sea[J]. Advances in Earth Science, 2012, 27(3):359-366.
汪鹏,钟广法.南海ODP1144站深海沉积牵引体的岩石物理模型研究[J].地球科学进展,2012,27(3):359-366.
[30] Kuang Zenggui, Guo Yiqun. The sedimentary facies and gas hydrate accumulation models since Neogene of Shenhu Sea area, Northern South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 914-920.
匡增桂,郭依群. 南海北部神狐海域新近系以来沉积相及水合物成藏模式[J]. 地球科学——中国地质大学学报, 2011,36(5):914-920.
[31] Wu Shiguo, Sun Yunbao, Wang Xiujuan, et al. Geophysical signature and detection of shallow water flow in the deepwater basin of the northern South China Sea[J]. Chinese Journal of Geophysics, 2010,53(7):1 681-1 690.
吴时国, 孙运宝, 王秀娟,等. 南海北部深水盆地浅水流的地球物理特性及识别[J]. 地球物理学报,2010,53(7):1 681-1 690.
[32] Jacob C E. Flow of groundwater [C]∥ Rouse H, ed. Engineering Hydraulics, Proceedings of Fourth Hydraulics Conference Iowa Institute of Hydraulic Reasearch. New York:John Wiley and Sons, Inc. 328.
[33] Flemings P, Comisky J, Liu X, et al. Stress-controlled porosity in Overpressured Sands at Bullwinkle (GC65), Deepwater Gulf of Mexico[C]∥Proceedings of the Offshore Technology Conference, 2001.
[34] Dugan B, Flemings P. Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps[J]. Science, 2000, 289: 288-291.
[35] Gardner G, Gardner L, Gregory A. Formation velocity and density—The diagnostic basics for stratigraphic traps[J]. Geophysics, 1974, 39: 770-780.
[36] Lü S, McMechan G, Liaw A. Identification of SWF sands by elastic inversion of conventional 3D seismic data[C]∥Proceeding of Offshore Technology Conference. Houston, Texas, 2003.
[37] Liu Lele, Zhang Xuhui, Lu Xiaobing. Review on the permeability of hydrate-bearing sediments[J]. Advances in Earth Science, 2012, 27(7):733-746.
刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展,2012,27(7):733-746.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[7] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[8] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[14] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[15] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
阅读次数
全文


摘要