地球科学进展 ›› 2014, Vol. 29 ›› Issue (8): 968 -973. doi: 10.11867/j.issn.1001-8166.2014.08.0968

上一篇    下一篇

基于GIS的层次分析法在沽源地区铀成矿预测中的应用
卢辉雄( ), 王永军, 汪冰, 张恩, 王瑞军, 李名松   
  1. 核工业航测遥感中心, 河北 石家庄 050002
  • 收稿日期:2014-04-29 修回日期:2014-07-21 出版日期:2014-09-16
  • 基金资助:
    中国核工业地质局勘查项目“河北省沽源县小厂地区铀—多金属资源调查评价”(编号:201139)资助

Application of GIS-Based Analytic Hierarchy Process for Uranium Minerogenetic Prediction in Guyuan Region

Huixiong Lu( ), Yongjun Wang, Bing Wang, En Zhang, Ruijun Wang, Mingsong Li   

  1. Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050002
  • Received:2014-04-29 Revised:2014-07-21 Online:2014-09-16 Published:2014-09-17

在分析了沽源地区铀矿床成矿地质特征的基础上, 总结了区域铀矿找矿标志, 提取了各类找矿信息, 利用GIS的空间分析功能分别提取了地层、构造、潜火山岩、热液蚀变、化探异常、航磁异常、航放异常等14个有利分析因子, 建立了层次分析模型, 并根据该区成矿概率的分布进行了成矿远景区的预测, 圈定Ⅰ级远景区2个、Ⅱ级远景区7个、Ⅲ级远景区5个, 为在沽源地区开展进一步铀矿找矿奠定了基础。

Based on the analysis of metallogenetic characteristics of the uranium deposits in Guyuan region, summarizes the regional prospecting symbol, Various geological anomalous information of the area is analyzed. With the spatial analysis function of GIS, extracte the 14 favorable factors include strata, structure, subvolcanic rock, hydrothermal, alteration, geochemical anomaly, aeromagnetic anomalies, etc. were extracted, and the analytic hierarchy process model was built. Finally, based on the analysis, favorable areas were predicted according to the ore formation probability values.The prediction showed two firstgrade metallogenetic targets, seven secondarygrade metallogenetic targets and five threegrade metallogenetic targets, which laid the foundation for further prospecting in Guyuan region.

中图分类号: 

表1 沽源地区典型矿床成矿特征
Table 1 Uranium prospecting model in Guyuan region
表2 表2 沽源地区铀矿预测评价层次分析模型
Table 2 Analytic hierarchy process model of uranium evaluation in Guyuan region
图1 沽源地区铀成矿预测图 1-区域性深大断裂;2-区域性一般断裂;3-铀钼矿床;4-铀矿化(异常)点; 5-Ⅰ级预测区;6-Ⅱ级预测区;7-Ⅲ级预测区
Fig. 1 Uranium metallogenic prediction map of Guyuan region 1-Regional deep fault; 2-Regional general fault; 3-U-Mo deposits; 4-Uranium mineralization(abnormal) points; 5-First-grade metallogenetic target; 6-Secondary-grade metallogenetic target; 7-Three-grade metallogenetic target
表3 沽源地区铀矿预测区级别及名称
Table 3 Level and the name of uranium prediction in Guyuan region
[1] Shen Guangyin. Geological conditions for ore-forming process and prospecting direction of the U-Mo polymetallic deposits in Guyuan Volcanic Basin[J]. Mineral Resources and Geology, 2008, 22(6):510-516.
[沈光银. 沽源火山盆地铀钼多金属成矿地质条件分析及找矿方向[J]. 矿产与地质, 2008, 22(6):510-516.]
[2] Zhang En. The application of airborne survey data in study to the metallogenetic prognosis for uranium in Guyuan Basin[J]. Morden Mining, 2012, 512(9):48-51.
[张恩. 航测资料在沽源盆地铀矿远景预测中的应用[J]. 现代矿业, 2012, 512(9):48-51.]
[3] Li Qiquan, Wang Changquan, Yue Tianxiang, et al. Method for spatial simulation of topsoil organic matter in China based on a neural network model[J]. Advances in Earth Science, 2012, 27(2):175-184.
[李启权, 王昌全, 岳天祥, 等. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2):175-184.]
[4] Zhu Zixian, Zang Shuying. Research on chlorophyll concentration retrieval models of keqin lake basde on genrtic neural netwoks[J]. Advances in Earth Science, 2012, 27(2):202-208.
[朱子先, 臧淑英.基于遗传神经网络的克钦湖叶绿素反演研究[J]. 地球科学进展, 2012, 27(2):202-208.]
[5] Chen Cuihua, Ni Shijun, He Binbin, et al. Potential ecological risk analysis of heavy metals contam ination based on GIS methods in sediments of Dexing, Jiangxi Province, China[J]. Advances in Earth Science, 2008, 23(3):312-322.
[陈翠华, 倪师军, 何彬彬, 等. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3):312-322.]
[6] Wang Yongjun, Li Mingsong, Quan Xudong, et al. Application of GIS-based analytic hierarchy process for minerogenetic prediction in northern Zhangjiakou region[J]. Geological Science and Technology Information, 2007, 26(4):15-18.
[王永军, 李名松, 全旭东, 等.基于GIS的层次分析法在张家口北部地区金矿成矿预测中的应用[J]. 地质科技情报, 2007, 26(4):15-18.]
[7] Xi Zhen,  Gao Guangming, Xiao Juan, et al. Study on multi-source information metallogenic prognosis using GIS in southern Peru[J]. Geoscience, 2013, 27(1):108-115.
[席振, 高光明, 肖娟, 等.基于GIS的秘露南部多源信息成矿预测研究[J]. 现代地质, 2013, 27(1):108-115.]
[8] Quan Xudong, Wang Yongjun, Wang Bing, et al. Application of ANN and GIS in uranium metallization prediction—A case study of northern Tarim Basin[J]. Uranium Geology, 2013, 29(6):374-379.
[全旭东, 王永军, 汪冰, 等.基于GIS的人工神经网络模型在铀成矿预测中的应用——以塔里木盆地北缘为例[J]. 铀矿地质, 2013, 29(6):374-379.]
[9] Asadi H H, Hale M. Apredictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran[J]. Computers & Geosciences, 2001, 27(8):901-912.
[10] Xiang Yunchuan, Ren Tianxiang, Yang Zhuxi. The development and utilization of Geophysical Information System (GIS) and the integrated analysis of geoscience information for the prognosis of ore resources[J]. Geophysical & Geochemical Exploration, 1996, 20(1):1-13.
[11] Li Yaosong. Isotope age of principal mineralization period in uranium deposit No.460[J]. Uranium Geology, 1989, 5(4):203-208.
[李耀菘. 460铀矿床主要矿化期的同位素年龄[J]. 铀矿地质, 1989, 5(4):203-208.]
[12] Rui Guozhen. Discussion on metallogenic characteristics and genesis of large U-Mo deposit No. 460[J]. World Nuclear Geoscience, 2010, 27(3):149-154.
[芮国桢. 460大型铀—钼矿床成矿地质特征及成因探讨[J]. 世界核地质科学, 2010, 27(3):149-154.]
[13] Sang Jisheng, Wang Zhenbin, Yu Nianfu. A study geological characteristics and metalogenetic condition of uranium deposit No. 534[J]. Uranium Geology, 1992, 8(5):71-76.
[桑吉盛, 王振斌, 于年福.543铀矿床成矿地质特征及成因探讨[J]. 铀矿地质, 1992, 8(5):71-76.]
[14] Shen Guangyin. Ore-control ling factors of the 460 U-Mo deposit and its genesis discussion[J]. Mineral Resources and Geology, 2007, (5):509-514.
[沈光银. 460铀钼矿床控矿因素及矿床成因探讨[J]. 矿产与地质, 2007, (5):509-514.]
[15] Chen Donghuan, Fan Honghai, Wang Fenglan, et al. The alteration characteristics of uranium deposits in Guyuan-Hongshanzi area[J]. Uranium Geology, 2011, 27(2):89-93.
[陈东欢, 范洪海, 王凤岚, 等. 沽源—红山子地区火山岩型铀矿床蚀变特征[J]. 铀矿地质, 2011, 27(2):89-93.]
[1] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[2] 王琳, 武虹, 贾鑫. 西辽河地区史前聚落的时空演变与生业模式和气候历史的相关性研究[J]. 地球科学进展, 2016, 31(11): 1159-1171.
[3] 邬群勇, 孙梅, 崔磊. 时空数据模型研究综述[J]. 地球科学进展, 2016, 31(10): 1001-1011.
[4] 汪少勇, 李建忠, 郭秋麟, 李登华. 层次分析法在致密油有利区优选中的应用——以川中侏罗系大安寨段为例[J]. 地球科学进展, 2015, 30(6): 715-723.
[5] 胡庆武,林春峰,余 飞,曾力. 多维GIS矿产评价数据管理系统设计和实现[J]. 地球科学进展, 2010, 25(9): 990-996.
[6] 黎夏,李丹,刘小平,何晋强. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907.
[7] 杨武年,李天华,廖崇高,刘汉湖,谢春庆,简季,曾涛,戴晓爱,夏涛,万里红. 高原机场建设工程“3S”技术综合应用[J]. 地球科学进展, 2008, 23(5): 457-462.
[8] 陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322.
[9] 沈体雁. CGE与GIS集成的中国城市增长情景模拟框架研究[J]. 地球科学进展, 2006, 21(11): 1153-1163.
[10] 李庆谋. 多维分形克里格方法[J]. 地球科学进展, 2005, 20(2): 248-256.
[11] 许强;黄润秋;李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3): 478-483.
[12] 田光进. 基于遥感与GIS的中国城镇用地扩展特征[J]. 地球科学进展, 2003, 18(4): 504-508.
[13] 江东,杨小唤,王乃斌,刘红辉. 基于RS、GIS的人口空间分布研究[J]. 地球科学进展, 2002, 17(5): 734-738.
[14] 袁艳斌;张勇传;王乘;袁晓辉. 流域地理景观的GIS数据三维可视化[J]. 地球科学进展, 2002, 17(4): 497-501.
[15] 王思远,张增祥,赵晓丽,周全斌. 遥感与GIS技术支持下的湖北省生态环境综合分析[J]. 地球科学进展, 2002, 17(3): 426-431.
阅读次数
全文


摘要