地球科学进展 ›› 2014, Vol. 29 ›› Issue (2): 207 -215. doi: 1001-8166(2014)02-0207-09

所属专题: 青藏高原研究——青藏科考

   下一篇

青藏高原气候系统变化及其对东亚区域的影响与机制研究进展
马耀明 1( ), 胡泽勇 2, 田立德 1, 张凡 1, 段安民 3, 阳坤 1, 张镱锂 4, 杨永平 1   
  1. 1.中国科学院青藏高原研究所,北京 100101
    2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
    3.中国科学院大气物理研究所,北京 100029
    4.中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2013-10-14 修回日期:2014-01-24 出版日期:2014-03-10
  • 基金资助:
    全球变化研究国家重大科学研究计划项目#cod#x0201c;青藏高原气候系统变化及其对东亚区域的影响与机制研究#cod#x0201d;全体研究人员和技术支撑人员及青藏高原野外台站的工作人员在过去的3年时间内,为项目的顺利实施做出了巨大贡献,在此一并感谢。;全球变化研究国家重大科学研究计划项目#cod#x0201c;青藏高原气候系统变化及其对东亚区域的影响与机制研究#cod#x0201d;(编号:2010CB951700)资助.

Study Progresses of the Tibet Plateau Climate System Change and Mechanism of its Impact on East Asia

Yaoming Ma 1, Zeyong Hu 2, Lide Tian 1, Fan Zhang 1, Anmin Duan 3, Kun Yang 1, Yili Zhang 4, Yongping Yang 1   

  1. 1. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101
    2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000
    3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
    4. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
  • Received:2013-10-14 Revised:2014-01-24 Online:2014-03-10 Published:2014-02-10

青藏高原地区特殊的大气圈、水圈、冰冻圈、生物圈等多圈层相互作用过程及其变化,不仅对青藏高原及其周边地区的气候格局和变化有重要影响,而且对东亚、北半球乃至全球的环流形势和异常产生深远影响。为此,全球变化研究重大科学研究计划于2010年9月启动了#cod#x0201c;青藏高原气候系统变化及其对东亚区域的影响与机制研究#cod#x0201d;项目,旨在开展青藏高原环境、地表过程、生态系统对全球变化的响应及其对周边地区人类生存环境影响的综合交叉研究,以揭示青藏高原气候系统变化及其对东亚区域的影响机制,提出前瞻性的应对气候变化与异常的策略,减少其导致的区域自然灾害的损失。项目实施近3年来,开展了青藏高原首次#cod#x0201c;星#cod#x02014;机#cod#x02014;地#cod#x0201d;综合立体协同观测试验和大规模地气相互作用综合观测试验。在遥感结合地面观测估算青藏高原地表特征参数和能量通量方法,高原地区上对流层和下平流层结构,高原季风与东亚季风和南亚季风之间的内在联系,中国及青藏高原地区太阳辐射和风速的年代际变化趋势,青藏高原春季感热源减弱及其对亚洲夏季风和中国东部降水的影响,以及极高海拔地区土地覆被格局等方面取得了一些突出进展。

The interaction between atmosphere, hydrosphere, cryosphere and biosphere of the Tibetan Plateau (TP) significantly affects not only climate pattern and climate change in local and surrounding area, but also the Asian monsoon process and the global atmospheric circulation. The study of the #cod#x0201c;Tibet Plateau climate system change and mechanism of its impact on East Asia#cod#x0201d;, a project of the National Key Scientific Research Program of China for Global Change Study, was initiated in September of 2010. It aimed at performing integrated research on the Tibetan Plateau climate system responding to global change and its impact on surrounding areas, collaborating on major scientific issues to achieve breakthrough in scientific research on the Tibet Plateau climate system change and mechanism of its impact on East Asia, proposing prospective strategy coping with abnormal climate change to reduce regional natural disaster losses. A simultaneous and coordinated experiment of airborne remote sensing and groundbased observation was carried out in TP for the first time. And a series of research results have been achieved in the past three years of project implementation. The results include determination of regional distributions and seasonal variations of land surface heat fluxes in whole TP region, behavior of the tropopause folding events over the west TP, definition of plateau monsoon and its association with general circulation anomalies, decrements of solar radiation and wind speed across China and TP area in recent decades and their possible causes, weaken trend of sensible heat source in the spring over TP and its impact on the Asian summer monsoon, and classification of land cover in high altitude region of Mount Qomolangma, etc.

中图分类号: 

图1 航空试验航线规划示意图
Fig.1 Flying routes of airborne remote sensing experiment
图2 高原尺度地气相互作用观测站点分布图
Fig.2 Site distribution of airland interaction observation at plateau scale
图3 卫星反演的青藏高原地面加热场分布的季节变化
Fig.3 Seasonal variations of ground heating field by remote sensing in the Tibetan Plateau
图4 (a)2008年2月25日和(b)2008年2月29日高原地区对流层风温场结构在84.25#cod#x000b0;E的纬向#cod#x02014;高度剖面图 蓝色线为动力对流层顶,红色虚线为等位温线,黑色实线为纬向风,绿色区域为西风急流位置
Fig.4 Pressure latitude cross of troposphere structures over plateau at 84.25#cod#x000b0;E on (a) 25 and (b) 29 February 2008 Blue line: Potential vorticity, Red: Potential temperature, Black: Zonal winds, Green area: Westerly jet
图5 图5动态(DPMI)和传统(TPMI)高原季风指数的(a)季节和(b)年际变化
Fig.5 (a) Seasonal and (b) interannual variation of dynamic (DPMI) and traditional (TPMI) plateau monsoon indices
图6 图6中国和青藏高原地区平均的辐射变化
Fig.6 Regional mean variation of solar radiation in China and in the Tibetan Plateau
图7 中国(CN)和青藏高原地区(TP)地表风速变化的3个阶段 1974年前的加强期,1974#cod#x02014;2002年的持续减弱期,2002年开始的稳定或恢复期
Fig.7 Three stages of surface wind speed in China (CN) and in the Tibetan Plateau (TP) Strengthening before 1974, continuous weakening during 1974 to 2002, stable or recovering after 2002
图8 青藏高原(a)中东部和(b)西部春季感热通量及与其相关的地面气温、地表温度和地表风速的变化趋势
Fig.8 Time series of sensible heat (SH), ground air and skin temperature (Ta and Ts), wind speed (V 10) over the (a) central-eastern and (b) western Tibetan Plateau in spring
[1] Qiu Jane. The third pole[J]. Nature, 2008, 454(24):393-396.
[2] Ye Duzheng,Gao Youxi. Meteorology of Qinghai-Xizang Plateau[M]. Beijing: Science Press, 1979.
[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979.]
[3] Zhou Mingyu,Xu Xiangde,Bian Lin#cod#x02019;gen,et al. Observation Analysis and Dynamic Study on the Atmospheric Boundary Layer in the Qinghai-Xizang Plateau[M]. Beijing: Meteorology Press, 2000: 197.
[周明煜,徐祥德,卞林根,等.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社,2000:197.]
[4] Wu Guoxiong, Zhang Yongsheng. Tibetan Plateau forcing and timing of the monsoon-onset over south Asia and the south China Sea[J]. Month Weather Review, 1998,126(4):913-927.
[5] Ma Yaoming, Zhong Lei, Su Zhongbo, et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 enhanced thematic mapper data over the central Tibetan Plateau area[J]. Journal of Geophysics Research-Atmospheres, 2006, 111: D10305, doi:10.1029/2005JD006742.
[6] Ma Yaoming, Zhong Lei, Wang Binbin, et al. Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in-situ data[J]. Atmospheric Chemistry and Physics, 2011, 11: 10461-10469.
[7] Ma Yaoming, Wang Binbin, Zhong Lei, et al. The regional surface heating field over the heterogeneous landscape of the Tibetan Plateau using MODIS and in-situ data[J]. Advances in Atmospheric Sciences, 2012, 29(1): 47-53.
[8] Chen Xuelong, Ma Yaoming, Kelder H, et al. On the behaviour of the tropopause folding events over the Tibetan Plateau[J].Atmospheric Chemistry and Physics, 2011, 11: 5113-5122, doi:10.5194/acp-11-5113-2011.
[9] Xun Xueyi, Hu Zeyong, Ma Yaoming. The dynamic Plateau Monsoon Index and its association with general circulation anomalies[J]. Advances in Atmospheric Sciences, 2012, 29(6): 1249-1263, doi:10.1007/s00376-012-1125-9.
[10] Tang Wenjun, Yang Kun, Qin Jun, et al. Solar radiation trend across China in recent decades: A revisit with quality-controlled data[J]. Atmospheric Chemistry and Physics, 2011, 11: 393-406.
[11] Yang Kun, Ding Bohong, Qin Jun, et al. Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J]. Geophysics Research Letters, 2012, 39: L20710, doi:10.1029/2012GL053733.
[12] Lin Changgui, Yang Kun, Qin Jun, et al. Observed coherent trends of surface and upper-air wind speed over China since 1960[J]. Journal of Climate, 2013, 26: 2891-2903,doi:10.1175/JCLI-D-12-00093.1.
[13] Duan Anmin, Li Fei, Wang Meirong, et al. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J]. Journal of Climate, 2011, 24: 5671-5682.
[14] Duan Anmin,Wang Meirong, Lei Yonghui, et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 2013,26: 261-275.
[15] Gao Jungang, Zhang Yili. Incorporating spectral data into logistic regression model to classify land cover: A case study in Mt. Qomolangma (Everest) national nature preserve[J]. International Journal of Geographical Information Science, 2012, 26(10): 1845-1826.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要