地球科学进展 ›› 2013, Vol. 28 ›› Issue (9): 976 -987. doi: 10.11867/j.issn.1001-8166.2013.09.0976

综述与评述 上一篇    下一篇

钾盐矿床成矿条件研究若干进展
王春连 1,刘成林 1*,王立成 1,张林兵 2   
  1. 1.中国地质科学院矿产资源研究所,国土资源部成矿作用和资源评价重点实验室,北京 100037;2.地质过程与矿产资源国家重点实验室,中国地质大学地球科学与资源学院,北京 100083
  • 收稿日期:2012-11-27 修回日期:2013-07-23 出版日期:2013-09-10
  • 通讯作者: 刘成林(1963-),男,云南文山人,研究员,主要从事盐湖沉积与钾盐矿床研究.E-mail:liuchengl@263.net E-mail:刘成林 liuchengl@263.net
  • 基金资助:

    国家重点基础研究发展计划项目“中国陆块海相成钾规律及预测研究”(编号:2011CB403000);国家自然科学基金重点项目“罗布泊盐湖钾盐大规模超前聚集成矿机理研究”(编号:40830420)资助.

Reviews on Potash Deposit Metallogenic Conditions

Wang Chunlian 1, Liu Chenglin 1, Wang Licheng 1, Zhang Linbing 2   

  1. 1.MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China; 2.State Key Laboratory of Geological Processes and Mineral Resources,School of the Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
  • Received:2012-11-27 Revised:2013-07-23 Online:2013-09-10 Published:2013-09-10

钾盐是中国紧缺的重要战略资源之一,寻找大型钾盐矿床是中国矿床学界的一大难题。近几十年来世界钾盐矿床有不少新的发现,提供了丰富的实际资料,钾盐矿床的成矿理论也有相应的修正和补充。通过总结国内外钾盐矿床最新的成钾特征, 归纳了钾盐矿床形成主要受控于成矿时代、构造条件、成盐的古地理条件、古气候、盆地位置和盐类物质来源几个条件。钾盐主要成矿时代为二叠纪、白垩纪、晚侏罗世、寒武纪和泥盆纪。巨厚的蒸发岩建造的形成,有赖于构造与环境气候的特殊配合。气候旋回与地壳运动的旋回性有关,即每一个大的地壳构造旋回末期,往往都出现一个成盐高峰期,钾盐矿床均出现于成盐的高峰期内。钾盐矿床同其他盐类矿床一样,也需要干旱的气候条件。由于钾盐是卤水演化的最后阶段的产物,故需要持续干旱的气候条件。但气候条件也是很复杂的,在普遍认为潮湿气候时期出现了局部的干旱气候带,干旱气候带的形成明显受地形地貌的控制,在局部干旱的气候条件下也可以形成钾盐矿。按照传统概念钾盐形成的位置应该在岩盐盆地之中,但是实际情况是比较复杂的,有的钾盐盆地完全和盐岩盆地相重合,有的在岩盐盆地一侧,甚至还有的在岩盐盆地范围之外。盐类物质来源有海源、陆源和深源。对影响钾盐矿床形成的上述几个重要条件的研究进展进行了概述,对在中国进一步找寻钾盐矿床具有重要的借鉴意义。最后,总结了3种国外大型钾盐矿床成矿模型,即陆表海盆成钾作用模式、异常蒸发成钾模式和裂谷成钾模式。3种成钾模式的关键区别在于钾盐的物质来源不同,即陆表海盆成钾作用模式中钾的来源是海水,异常蒸发成钾模式中钾的来源为非海相卤水,而裂谷成钾模式中钾的来源主要是火山活动带来的深部物质。

Potash salt is one of key scarce strategic resources. Searching for large scale of potash salt deposit is one big problerm which Chinese academic community faces. Many new discoveries of world potash deposit have been made in recent ten years, which provide abundant practical information and complement the potash metallogenic theory. Through the summary of  the potash forming characteristics at home and abroad, the paper studies the potash forming time, tectonic condition, paleogeographic condition, paleoclimate, basin location and salt source. Potash is mainly formed in Permian, Cretaceous, late Jurassic, Cambrian and Devonian. The combination of structure and environment helps to form large scale of evaporation. The climate cycle is related with crust activity. As the other ore deposit, the formation of potash ore also needs dry climate. Potash is the product of final stage in brine evolution, and therefore, it needs persistent drought climate. However, the climate condition is very complicated. Drought climate belt also occurs in humid climate stage, which is controlled by geomorphology. Potash ore can also form in local drought condition. Generally, potash forms in rock salt basin. However, the actual situation is very complicated. Some potash basin is coincided with rock salt basin, some is on one side of rock salt basin; and some are even in the outside of rock salt basin. Salt materials can be from three sources: marine source, terrigenous source and deep source.The paper gives an overview of the research status about the potash deposit forming conditions, which has great guiding significance for searching potash deposit in China. The paper also summarizes the three types of metallogenic models for potash deposit, including epicontinental metallogenic model, abnormal marine evaporation model and rift valley model. The three models are mainly different in material sources, in which the potash in epicontinental metallogenic model is from seawater; the potash in abnormal evaporation model is from nonmarine brine and the potash in rift valley model is mainly from deep material of volcanic activity.

中图分类号: 

[1]Liu Chenglin, Wang Mili, Jiao Pengcheng, et al. The exploration experiences of potash deposits in the world and probing of countermeasures of China’s future potash-deposits investigation[J]. Geology of Chemical Minerals, 2006,28(1):1-8.[刘成林,王弭力,焦鹏程,等.世界主要古代钾盐找矿实践与中国找钾对策[J].化工矿产地质,2006,28(1):1-8.]

[2]Liu Chenglin, Jiao Pengcheng, Wang Mili. A tentative discussion on exploration model for potash in basion of China[J]. Mineral Deposits, 2010, 29(4): 581-592.[刘成林,焦鹏程,王弭力. 盆地钾盐找矿模型探讨[J].矿床地质,2010,29(4):581-592.]

[3]Wang Mili, Liu Chenglin, Jiao Pengcheng, et al. Saline Lake Potash Resources in the Lop Nur, Xinjiang[M]. Beijing: Geological Publishing House, 2001:199-209.[王弭力,刘成林,焦鹏程,等. 罗布泊盐湖钾盐资源[M]. 北京:地质出版社,2001:199-209.]

[4]Zheng Mianping, Zhang Zhen, Zhang Yongsheng, et al. Potash exploration characteristics in China: New understanding and research progress[J]. Acta Geoscientica Sinica, 2012, 33(3): 280-294.[郑绵平,张震,张永生,等.我国钾盐找矿规律新认识和进展[J].地球学报,2012,33(3):280-294.]

[5]Qian Ziqiang, Qu Yihua, Liu Qun. Potash Deposits[M]. Beijing: Geological Publishing House, 1994.[钱自强, 曲一华, 刘群. 钾盐矿床[M]. 北京: 地质出版社, 1994.]

[6]Yuan Jianqi. Review on prospecting target and method for potash resources[J]. Geology in China, 1961, 6: 27-33.[袁见齐. 略谈我国钾肥资源的找矿方向和找矿方法[J]. 中国地质, 1961, 6: 27-33.]

[7]Zheng Mianping. The chambersite deposits of marine sedimentary-boron deposits in Jixian county of Hebei Province[M]∥Song Shuhe, ed. Mineral Deposits of China (Volume Two). Beijing: Geological Publishing House, 1994: 79-81.[郑绵平.海相沉积锰方硼石矿床——河北蓟县硼矿床[M]∥宋书和编. 中国矿床(下册). 北京:地质出版社,1994:79-81.]

[8]Zheng Mianping, Qi Wen, Zhang Yongsheng. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 2006, 25(11): 1 239-1 246.[郑绵平,齐文,张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11):1 239-1 246.]

[9]Strahov H M. The Historical Principle[M]. Beijing: Geological Publishing House, 1960.[斯特拉霍夫 H M. 地史学原理[M]. 北京:地质出版社,1960.]

[10]Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98: 217-268.

[11]Zheng M P. On salinology[J]. Hydrobiologia, 2001, 406: 339-347.

[12]Haq B U, Al-Qahtani A M. Phanerozoic cycles of dea-level change on the Arabian Platform[J]. Geoarabia, 2005, 10(2): 127-160.

[13]Hay W W, Migdisov A, Balukhovsky A N, et al. Evaporites and the salinity of the ocean during the phaneroxoic: Implications for climate, ocean circulation and life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240: 3-46.

[14]Condie K C. Earth as An Evolving Planetary System[M]. Amsterdam: Academic Press, 2004: 350.

[15]Pei Rongfu, Rokuist D V, Mei Yanxiong, et al. 1∶ [KG-*2]25000000 Large Scale of World Ore Distribution Map[M]. Beijing: Geological Publishing House, 2009.[裴荣富, 荣奎斯特D V, 梅燕雄, 等. 1∶ [KG-*2]25000000世界大型矿床成矿图[M]. 北京:地质出版社,2009.]

[16]Zheng Mianping, Yuan Heran, Zhang Yongsheng, et al. Regional distribution and prospects of potash in China[J]. Acta Geologica Sinica, 2010, 84(11): 1 523-1 553.[郑绵平, 袁鹤然, 张永生, 等. 中国钾盐区域分布与找钾远景[J]. 地质学报, 2010, 84(11): 1 523-1 553.]

[17]Ren Jishun, Hao Jie. Tectonic research of China: Review and prospect[J]. Geological Review, 2002, 48(2): 113-124.[任纪舜, 郝杰. 回顾与展望: 中国大地构造学[J]. 地质论评, 2002, 48(2): 113-124.]

[18]Wang Hongzhen. An outline of the tectonic evolution of China[M]∥Selected Works of Wang Hongzhen. Beijing: Science Press,2005:394-406.

[19]Wang Hongzhen. Geotectonic units and tectonic development of China and adjacent regions[C]∥Selected Works of Wang Hongzhen. Beijing: Science Press, 2005:359-379.

[20]Bear C A. Geological problems in Saskatchewan Potash Mining due to peculiar conditions during deposition of Potash Beds[M]∥Coogan A H. Fourth International Symposium on Salt, Vol. 1. Cleveland Ohio: Northern Ohio Geological Society, 1973:101-118.

[21]Borchert H, Muir R O. Salt Deposits—The origin, metamorphism and Deformation of Evaporites[M]. London: D. Van Nostrand Company LTD., 1964.

[22]Braitsch O. Salt Deposits, Their Origin and Compositon Springin-Verlag Berlin[M]. New York: Heidelberg, 1971.

[23]Borchert H. On the Formation of lower Cretaceous potassium salts and tachhydrite in the Sergipe Basin (Brazil) with some remarks on similar occurrences in West Africa (Gabon, Angola etc.)[C]∥Klemm D D, Schneider H J, eds. Time- and Strata-bound Ore Deposits. Berlin: Springer-Verlag, 1977: 94-111.

[24]Liu Chenglin, Wang Mili, Jiao Pengcheng, et al. Holocene yellow silt layers and the Paleoclimate event of 8200a BP in Lop Nur, Xinjiang, NW China[J]. Acta Geologica Sinica, 2003, 77(4): 514-518.

[25]Wang Mili, Liu Chenglin, Jiao Pengcheng, et al. Minerogenic theory of the superlarge Lop Nur potash deposit, Xinjiang, China[J]. Acta Geologica Sinica, 2005,79(1): 53-65.

[26]Tan Hongbing, Ma Haizhou, Ma Wandong, et al. Research on geological and geochemical characteristics of Paleo-Salt rock and its potash ore formation in western Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2004, 23(3): 194-199.[谭红兵, 马海州, 马万栋,等. 塔里木盆地西部古岩盐地质地球化学特征与成钾条件分析[J]. 矿物岩石地球化学通报, 2004, 23(3): 194-199.]

[27]Zhang Xiying, Ma Haizhou, Han Yuanhong. Recent status and prospects on potash deposits on Thailand-Laos Khorat Plateau[J]. Advances in Earth Science, 2012, 27(5): 549-556.[张西营, 马海州, 韩元红. 泰国—老挝呵叻高原钾盐矿床研究现状及展望[J]. 地球科学进展, 2012, 27(5): 549-556.]

[28]Yao Yuan, Ma Haizhou, Tan Hongbing, et al. Potash deposit formation condition and Tarim Basin potash deposit exploration reasearsh[J]. Journal of Salt Lake Research, 2004, 12(2): 8-13.[姚远, 马海州, 谭红兵, 等.古钾盐成矿条件和塔里木盆地找钾研究[J]. 盐湖研究, 2004, 12(2): 8-13.]

[29]Wang Chunlian, Liu Chenglin, Hu Haibing,et al. Sedimentary characteristics and its environmental significance of salt-bearing strata of the member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression, Jianghan Basin[J]. Journal of Palaeogeography, 2012, 14(2): 165-175.[王春连, 刘成林, 胡海兵, 等. 江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义[J]. 古地理学报, 2012, 14(2): 165-175.]

[30]Liu Chenglin, Wang Mili, Jiao Pengcheng, et al. Features and formation mechanism of faults and potash-forming effect in the Lop Nur salt lake, Xinjang, China[J]. Acta Geologica Sinica, 2006, 80(6): 936-943.

[31]Yuan Jianqi, Huo Chengyu, Cai Keqin. The high mountain-deep basin saline environment a new genetic model of salt deposits[J]. Geological Review, 1983, 29(2):159-165.[袁见齐, 霍承禹, 蔡克勤. 高山深盆的成盐环境—种新的成盐模式的剖析[J]. 地质论评, 1983, 29(2): 159-165.]

[32]Zhang Pengxi. Salt Lake in Qaidam Basin[M]. Beijing: Science Press, 1987.[张彭熹. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987.]

[33]Simms M J, Ruffell A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268.

[34]Simms M J, Ruffell A H. Climatic and biotic change in the late Triassic[J]. Journal of the Geological Society,1990, 147(2): 321-327.

[35]Vakhrameev V A. Jurassic and Cretaceous Floras and Climates of the Earth[M]. Cambridge: Cambridge University Press,1991:285.

[36]Parrish J T. Climate of the supercontinent Pangea[J]. Journal of Geology, 1993, 101:215-233.

[37]Soreghan G S, Soreghan M J, Hamilton M A. Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold?[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 268:234-259.

[38]Fang Xiaomin, Wu Fuli, Han Wenxia, et al. Plio-Pleistocene drying process of Asian inland—Sporopollen and salinity records from Yahu section in the central Qaidam Basin[J]. Quaternary Sciences, 2008, 28(5): 874-882.[方小敏, 吴福莉, 韩文霞, 等.上新世—第四纪亚洲内陆干旱化过程——柴达木中部鸭湖剖面孢粉和盐类化学指标证据[J]. 第四纪研究, 2008, 28(5): 874-882.]

[39]Qu Yihua, Yuan Pinquan, Shuai Kaiye, et al. The Sylvite Metalogenic Rule and Prediction in Lanping-Simao Basin[M]. Beijing: Geological Publishing House, 1998.[曲懿华, 袁品泉, 帅开业, 等. 兰坪—思茅盆地钾盐成矿规律及预测[M]. 北京: 地质出版社, 1998.]

[40]Zhong Weifu, Li Zhiwei, Shan Weiguo. A study on the sedimentary characteristics and origin of K-Mg salt in Khorat  Basin[J]. Yunnan Geology,2003, 22(2): 142-151.[钟维敷, 李志伟, 单卫国. 呵叻盆地钾镁盐矿沉积特征及成因探讨[J]. 云南地质, 2003, 22(2): 142-151.]

[41]Zhang Yongsheng, Zheng Mianping, Qi  Wen, et al. Investigation on potassium resource and its exploitation and utilization in Turkmenistan[J].Mineral Deposits,2005, 24(6): 692-696.[张永生, 郑绵平, 齐文, 等. 对土库曼斯坦钾盐资源及开发利用的考察[J]. 矿床地质, 2005, 24(6): 692-696.]

[42]Yuan Jianqi.Salt Mine Geological Selected Essays by Professor Yuan Jian[C].Beijing: China Academic Press, 1989.[袁见齐. 袁见齐教授盐矿地质论文选集[C].北京: 学苑出版社, 1989.]

[43]Qu Yihua. Deep brines—A new origin of potash deposits[J]. Journal of Mineralogy and Petrology,1982, 3(1): 7-14.[曲懿华. 钾盐矿床母液来源的新途径——深卤补给[J]. 矿物岩石, 1982, 3(1): 7-14.]

[44]Schmalz R F. Environment of marine evaporate deposition[J]. Miner: Industrial, 1970, 35(8): 1-7.

[45]Usiglio Par M J. Analyse deleau dela Mediterannee surles cotesde Fiance. Etutes sur la composition de l’eau dela Mediterannee et sur I’exploitation des sels quelle contient[J]. Annales de Chimie et de Physique, 1849, 27: 92-107.

[46]BАЯШКО M Γ. The geochemical law of potash deposit formation[M].Fan Li, et al. translated. Beijing: China Industry Press, 1965:274-309.[瓦里亚什科 M. 钾盐矿床形成的地球化学规律[M]. 范立,等译. 北京: 中国工业出版社, 1965, 274-309.]

[47]Lowenstein T K,  Spencer R J, Zhang P. Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam Basin of western China[J]. Science, 1989, 245: 1 090-1 092.

[48]Lowenstein T K, Risacher F. Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death valley and bristol dry lake California, Qaidam basin, China, and salar de Atacama, Chile[J]. Aquatic Geochemistry, 2009,15(1): 71-94.

[49]Arod A. Mineral spring and saline lake of the western rift Valley, Uganda[J]. Geochimica et Cosmochimica Acta,1969, 10:1 152-1 162.

[50]Hite R J, Japakasetr T. Potash deposits of the Khorat Plateau, Thailand and Laos[J]. Economic Geology, 1979, 74(2): 448.

[51]Utha-Aroon C. Continental origin of the Maha Sarakham evaporites, northeastern Thailand[J]. Journal of Southeast Asian Earth Sciences, 1993, 8(1):193-206.

[52]Lowenstein T K. Origin of depositional cycles in a Permian “saline giant”: The Salado (McNutt zone) evaporites of New Mexico and Texas[J]. Geological Society of America Bulletin, 1988, 100(4): 592.

[53]Holmearda J G, Hutchinsan R W. Potash-bearing evaporates in the Danakil area, Etiopia[J]. Economic Geology,1968, 63: 129-132.

[54]Eugster H P. Lake Magadi, Kenya and Its Precursors, Hypersaline Brine and Evaporitic Environments[M]. Amsterdam: Elserire Scintific Publishing Company Co., 1980.

[55]Bentor Y K. Some geochemical aspects of the Dead Sea and the question of its age[J]. Geochimica et Cosmochimica Acta, 1961, 25: 239-260.

[56]Zak I, Bentor Y K. Some new data on the salt deposits of the Dead Sea area, Israel[J].Geology of Saline Deposits, 1972, 7: 137-146.

[57]Dai Wentian. The hot brine of Red Sea and modern deposite rich in heavy metal[J]. Foreign Geology, 1974,12: 1-9.[戴问天. 红海热卤水与近代富含重金属沉积[J]. 国外地质, 1974, 12: 1-9.]

[58]Thompson A B. Water in the Earth’s upper mantle[J]. Nature, 1992, 358: 295-302.

[59]Wyllie P J. Mantle fluid composition buffered in peridotite-CO2-H2O by carbonates amphibole and phlogopite[J]. Journal of Geology, 1978, 86: 687-713.

[60]Bell D R. Water in mantle minerals[J]. Nature, 1992, 235: 646-647.

[61]Plank T. The brine of the Earth[J]. Nature, 1996, 380:202-203.

[62]Liu Chenglin. Characteristics of potash deposits and mineralization in continental rift basins[J]. Acta Geoscientica Sinica, 2013,34(5):515-527.[刘成林. 大陆裂谷盆地钾盐矿床特征与成矿作用[J].地球学报,2013,34(5):515-527.]

[1] 张西营,马海州,韩元红. 泰国—老挝呵叻高原钾盐矿床研究现状及展望[J]. 地球科学进展, 2012, 27(5): 549-556.
阅读次数
全文


摘要