地球科学进展 ›› 2013, Vol. 28 ›› Issue (9): 968 -975. doi: 10.11867/j.issn.1001-8166.2013.09.0968

综述与评述 上一篇    下一篇

花粉源范围研究进展
许清海,张生瑞   
  1. 1.河北师范大学泥河湾考古研究院,河北 石家庄 050024;
    2.河北师范大学资源与环境科学学院,河北省环境演变与生态建设重点实验室,河北 石家庄 050024
  • 收稿日期:2013-07-02 修回日期:2013-08-17 出版日期:2013-09-10
  • 基金资助:

    国家自然科学基金项目“中国北方草原区主要植物类型相对花粉产量和花粉源范围”(编号:41071132)和“中国北方森林区主要乔木植物花粉产量研究”(编号:41371215)资助.

Advance in Pollen Source Area

Xu Qinghai,Zhang Shengrui   

  1. 1.Institute of Nihewan Archaeology Research,Hebei Normal University,Shijiazhuang 050024,China; 
    2.College of Resource and Environmental Sciences,Hebei Normal University,Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024,China
  • Received:2013-07-02 Revised:2013-08-17 Online:2013-09-10 Published:2013-09-10

20世纪60年代花粉源范围概念提出以来,引起了孢粉学领域的广泛关注。通过对前人研究的综合分析,结合我国北方不同地区植被调查和花粉数据,认为花粉源范围可分为广义花粉源范围和相关花粉源范围:前者表示输入沉积盆地花粉的来源范围,即沉积盆地主要花粉类型含量随距离增加不再明显上升的距离;后者表示与沉积盆地花粉相关最密切的植被范围,即沉积盆地花粉类型与周围植被对应关系无明显提升的距离。花粉粒和沉积盆地大小对广义花粉源范围和相关花粉源范围都具有明显影响;风速直接影响广义花粉源范围的大小,但对相关花粉源范围作用不明显。沉积盆地花粉组合由当地花粉、区域花粉和区域外花粉3部分组成,其含量分别占花粉组合的30%~45%,25%~60%和10%~30%。当地花粉指相关花粉源范围内的花粉,是沉积盆地周围植被的真实反映,对研究局地植被演替具有重要意义;区域花粉指广义花粉源范围内除去当地花粉的部分,是研究区域植被重建和气候变化的重要载体;区域外花粉指广义花粉源范围以外的花粉,代表更大范围的花粉源区,对区域植被指示意义较小。

The conception of pollen source area has attracted broadly attention since it was proposed in the 1960s. In this paper,it can be subdivided into Normal Source Area of Pollen (NSAP) and Relevant Source Area of Pollen (RSAP) based on reviewing former studies and our recent work of vegetation survey and pollen analysis in the Northern China. The NSAP means a source area of pollen input a sedimentary basin,indicating a distance area beyond where the pollen contents of major pollen types do not show evident increase with increased distance. The RSAP means a source area of pollen assemblages in a basin has the closest relationship with surrounding plants,indicating a distance area beyond where the relationship between pollen assemblage and surrounding vegetation do not show obvious increase with increased distance. The changes of sedimentary basins radii and pollen grain size influence the NSAP and RSAP evidently. Wind speed also changes the NSAP, but does not significantly affect  RSAP. The pollen of a sedimentary basin is composed of local pollen,regional pollen and extraregional pollen,which usually account for 30%~45%,25%~60% and 10%~30%,respectively. Local pollen which refers to the pollen coming within the RSAP range,is a reflection of the surrounding vegetation,and has important implications to the reconstruction and succession of local vegetation. Regional pollen which refers to the pollen coming from within the range of NSAP and excluding the range of local pollen,is the important carrier of studies for vegetation restoration and climate change. The pollen that comes outside the range of NSAP is called Extraregional pollen,which is mainly from greater distance by upperair flow,and has no indicator significance to the regional vegetation.

中图分类号: 

[1]Nakagawa T,Kitagawa H,Yasuda Y,et al. Asynchronous climate changes in the North Atlantic and Japan during the last termination[J]. Science,2003,299 (5 607): 688-691.

[2]Herzschuh U,Tarasov P,Wünnemann B, et al. Holocene vegetation and climate of the Alashan Plateau,NW China,reconstructed from pollen data[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2004,211 (1/2): 1-17.

[3]Seppä H,Poska A. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns[J]. Quaternary Research,2004,61 (1): 22-31.

[4]Erdtman G.An introduction to the study of pollen grains and spores[M]∥Handbook of Palynology: Morphology,Taxonomy,Ecology.Copenhagen: Munksgaard,1969.

[5]Knaap W O. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen[J]. Pollen et Spores,1987,29: 449-453.

[6]Johansen S,Hafsten U. Airborne pollen and spore registrations at Ny-lesund,Svalbard,summer 1986[J]. Polar Research,1988,6 (1): 11-17.

[7]Rousseau D D,Duzer D,Cambon G,et al. Long distance transport of pollen to Greenland[J]. Geophysical Research Letters,2003,30(14): 1 765. 

[8]Dai L,Weng C Y. A survey on pollen dispersal in the western Pacific Ocean and its paleoclimatological significance as a proxy for variation of the Asian winter monsoon[J]. Science in China (Series D),2011,54(2): 249-258.

[9]Tauber H. Differential Pollen Dispersion and the Interpretation of Pollen Diagrams: With A Contribution to the InterprEtation of the Elm Fall[M].Kobenhaven:Reitzels Forlag,1965.

[10]Prentice I C,Parsons R W. Maximum likelihood linear calibration of pollen spectra in terms of forest composition[J]. Biometrics,1983,39(4): 1 051-1 057.

[11]Prentice I C. Pollen representation,source area,and basin size: Toward a unified theory of pollen analysis[J]. Quaternary Research,1985,23(1): 76-86.

[12]Prentice I C,Berglund B E,Olsson T. Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes[J]. Boreas,1987,16(1):43-54.

[13]Sugita S. A model of pollen source area for an entire lake surface[J]. Quaternary Research,1993,39(2): 239-244.

[14]Sugita S,Gaillard M J,Brostrm A. Landscape openness and pollen records: A simulation approach[J]. The Holocene,1999,9(4): 409-421.

[15]Sugita S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition[J]. The Holocene,2007,17(2): 229-241.

[16]Sugita S. Theory of quantitative reconstruction of vegetation II: All you need is LOVE[J]. The Holocene,2007,17(2): 243-257.

[17]Calcote R. Pollen source area and pollen productivity: Evidence from forest hollows[J]. Journal of Ecology,1995,83(4): 591-602.

[18]Nielsen A B,Sugita S. Estimating relevant source area of pollen for small Danish lakes around AD 1800[J]. The Holocene,2005,15(7): 1 006-1 020.

[19]Bunting M J,Armitage R,Binney H A,et al. Estimates of ‘relative pollen productivity’ and ‘relevant source area of pollen’ for major tree taxa in two Norfolk (UK) woodlands[J]. The Holocene,2005,15(3): 459-465.

[20]Bunting M J,Hjelle K L. Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity estimates (relative PPE) for non-arboreal taxa[J]. Vegetation History and Archaeobotany,2010,19(4): 365-374.

[21]Wang Y B,Herzschuh U. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model[J]. Review of Palaeobotany and Palynology,2011,168(1): 31-40.

[22]Lowe J J,Walker M J C. Reconstruction Quaternary Environments (second edition)[M]. London: Addison Wesley Longman,1997.

[23]Jacobson G L,Bradshaw R H W. The selection of sites for paleovegetational studies[J]. Quaternary Research,1981,16(1): 80-96.

[24]Sugita S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation[J]. Journal of Ecology,1994,82(4): 881-897.

[25]Xu Q H,Tian F,Bunting M J,et al. Pollen source areas of lakes with inflowing rivers: Modern pollen influx data from Lake Baiyangdian,China[J]. Quaternary Science Reviews,2012,37: 81-91.

[26]Oldfield F. Some aspects of scale and complexity in pollen-analytically based paleoecology[J]. Pollen et Spores,1970,12: 163-171.

[27]Sutton O G.Micrometeorology[M]. New York: McGraw-Hill,1953.

[28]Chamberlain A C. The movement of particles in plant communities[M]∥Monteith J L,ed. Vegetation and the Atmosphere.  New York: Academic Press,1975: 155-203.

[29]Prentice I C. Records of vegetation in time and space: The principles of pollen analysis[M]∥Huntley B J,Thompson Webb III,eds. Vegetation History. Dordrecht: Kluwer Academic Publisher,1988: 17-42.

[30]Calcote R,Davis M B. Pollen from forest hollows as a stand-scale record of forest change[J]. Bulletin of the Ecological Society of America,1989,74: 183.

[31]Jackson S T,Wong A. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages[J]. Journal of Ecology,1994,82(1): 89-99.

[32]Thompson Webb III. Corresponding patterns of pollen and vegetation in Lower Michigan: A comparison of quantitative data[J]. Ecology,1974,55(1): 17-28.

[33]Thompson Webb III,Howe S E,Bradshaw R H W,et al. Estimating plant abundances from pollen percentages: The use of regression analysis[J]. Review of Palaeobotany and Palynology,1981,34(3/4): 269-300.

[34]Schwartz M W. Predicting tree frequencies from pollen frequency: An attempt to validate the R value method[J]. New Phytologist,1989,112(1): 129-143.

[35]Janssen C R. Recent pollen spectra from the deciduous and coniferous deciduous forests of Northeastern Minnesota: A study in pollen dispersal[J]. Ecology,1966,47(5): 804-825.

[36]Tauber H. Investigations of the mode of pollen transfer in forested areas[J]. Review of Palaeobotany and Palynology, 1967,3(1/4): 277-286.

[37]Brush G S,Brush L M. Transport of pollen in a sediment laden channel: A laboratory study[J]. American Journal of Science,1972,272(4): 359-381.

[38]Fall P L. Modern Pollen Spectra and Their Application to Alluvial Pollen Sedimentology[D]. Tucson: University of Arizona,1981.

[39]Solomon A M,Blasing T J,Solomon J A. Interpretation of floodplain pollen in alluvial sediments from an arid region[J]. Quaternary Research,1982,18(1): 52-71.

[40]Xu Qinghai,Wu Chen,Meng Lingyao,et al. Alluvial pollen assemblages feature of different geomorphologic units on the North China Plain[J]. Chinese Science Bulletin,1994,39(19): 1 792-1 795.[许清海,吴忱,孟令尧,等. 华北平原不同地貌单元冲积物孢粉组合特征[J]. 科学通报,1994,39(19): 1 792-1 795.]

[41]Xu Qinghai,Yang Xiaolan,Wang Zihui, et al. Study on pollen transportation by rivers[J]. Acta Botanica Sinica,1995,37(10): 829-832.[许清海,阳小兰,王子惠. 河流搬运花粉的初步研究[J]. 植物学报,1995,37(10): 829-832.]

[42]Xu Q H,Yang X L,Wu C, et al. Alluvial pollen on the north China Plain[J]. Quaternary Research,1996,46(3): 270-280.

[43]Wu Zhengyi. Vegetation of China[M]. Beijing: Science Press,1980.[吴征镒. 中国植被[M]. 北京: 科学出版社,1980.]

[44]Duffin K I,Bunting M J. Relative pollen productivity and fall speed estimates for southern African savanna taxa[J]. Vegetation History and Archaeobotany,2008,17(5): 507-525.

[45]Ertl C,Pessi A M,Huusko A,et al. Assessing the proportion of “extra-local” pollen by means of modern aerobiological and phenological records-An example from Scots pine (Pinus sylvestris L.) in northern Finland[J]. Review of Palaeobotany and Palynology,2012,185: 1-12.

[46]Andersen S T. The relative pollen productivity and pollen representation of north European trees,and correction factors for tree pollen spectra[J]. Danmarks Geologiske Undersgelse Række II,1970,96: 1-99.

[47]Bradshaw R H W. Quantitative reconstruction of local woodland vegetation using pollen analysis from a small basin in Norfolk,England[J]. Journal of Ecology,1981,69(3): 941-955.

[48]Godwin H. The Archives of the Peat Bogs[M]. Cambridge: Cambridge University Press,1981.

[49]Huntley B J,Thompson Webb III. Vegetation History[M]. Dordrecht: Kluwer Academic Publisher,1988.

[50]Janssen C R. Local and regional pollen deposition[M]∥Birks H J B,West R G,eds. Quaternary Plant Ecology. Oxford: Blackwell Scientific Publications,1973: 31-42.

[51]Sharma C,Bera S K,Upreti D K. Modern pollen-spore rain in Schirmacher oasis,East Antarctica[J]. Current Science,2002,82(1): 88-91.

[52]Xu Qinghai,Yang Xiaolan,Yang Zhenjing, et al. Reconstruction of climatic changes of Yanshan Moutain area since 5000 a BP inferred from pollen data[J]. Scientia Geographic Sinica,2004,24(3): 339-345.[许清海,阳小兰,杨振京,等.孢粉分析定量重建燕山地区5000年来的气候变化[J]. 地理科学,2004,24(3): 339-345.]

[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 肖生春,彭小梅,丁爱军,田全彦,韩超. 中国寒旱区灌木年轮学研究进展[J]. 地球科学进展, 2020, 35(6): 561-567.
[3] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[4] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[5] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[6] 潘晶, 黄翠华, 罗君, 彭飞, 薛娴. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J]. 地球科学进展, 2018, 33(4): 361-372.
[7] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[8] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[9] 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
[10] 袁文平, 蔡文文, 刘丹, 董文杰. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541-550.
[11] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[12] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
阅读次数
全文


摘要