地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 709 -717. doi: 10.11867/j.issn.1001-8166.2013.06.0709

研究论文 上一篇    下一篇

格陵兰海海冰外缘线变化特征分析
牟龙江,赵进平   
  1. 中国海洋大学极地海洋过程与全球海洋变化重点实验室,山东 青岛 266100
  • 收稿日期:2012-11-19 修回日期:2013-04-18 出版日期:2013-06-10
  • 基金资助:

    国家自然科学基金项目“北极涛动核心区的关键海洋学过程研究”(编号:40876006);全球变化研究重大科学研究计划项目“北半球冰冻圈变化及其对气候环境的影响与适应对策”(编号:2010CB951403)资助.

Variability of the Greenland Sea Ice Edge

Mu Longjiang, Zhao Jinping   

  1. Ocean University of China, Key Laboratory of Polar Oceanography and Global Ocean Change, Qingdao 266100, China
  • Received:2012-11-19 Revised:2013-04-18 Online:2013-06-10 Published:2013-06-10

格陵兰海作为北冰洋的边缘海之一,容纳了北极输出的海冰,其海冰外缘线的变化既受北极海冰输出量的影响,也受局地海冰融化和冻结过程的影响。利用2003年1月到2011年6月AMSRE卫星亮温数据反演的海冰密集度产品,对格陵兰海海冰外缘线的变化特征进行了分析。结果表明,格陵兰海海冰外缘线不仅存在一年的变化周期,还存在比较显著的半年变化周期,与海冰在春秋两季向岸收缩有关。格陵兰海冬季的海冰外缘线极大值呈逐年下降的趋势,体现了北极增暖导致的冬季海冰范围减小;而夏季海冰外缘线离岸距离的极小值呈上升趋势,表明夏季来自北冰洋的海冰输出量增大。2003—2004年是格陵兰海夏季海冰融化最严重的2年。2007年北冰洋夏季海冰覆盖范围达到历史最小;而格陵兰海夏季的最小海冰范围最大,表明2007年北冰洋海冰的输出量大于其他年份。此外,夏季格陵兰岛冰雪融化形成的地表径流对海冰外缘线有一定的影响。对海冰外缘线影响最大的不是格陵兰海的局地风场,而是弗拉姆海峡(Fram Strait)区域的经向风,它直接驱动了北冰洋海冰向格陵兰海的输运,进而对格陵兰海海冰外缘线的分布产生滞后的影响。

The Greenland Sea, a marginal sea of the Arctic Ocean, accommodates ice flux from the Arctic. The Greenland Sea ice edge is affected by ice export from the Arctic Ocean and also by local sea ice melting and freezing processes. The sea ice concentration product inverted from brightness temperature data on the AMSR-E microwave sensor from January 2003 to June 2011 is used to discuss the variability of the Greenland Sea ice edge in this paper. The study shows that the Greenland Sea ice edge did not only show annual periodic variations, but also significant semiannual periodic variations associated with sea ice extent changes in spring and autumn. The maximum of winter sea ice edge had a decreasing trend which demonstrated sea ice extent decreasing caused by Arctic warming in winter, and the minimum of summer sea ice edge had a increasing trend caused by higher sea ice export from Arctic Ocean in summer. 2003 and 2004 were the year Greenland Sea ice melt most in summer. In 2007, the Arctic Ocean had the largest ice extent, while the Greenland Sea had the least ice extent that demonstrated more ice export from Arctic Ocean than the other years. In addition, surface water runoff from ice melting in summer on the Greenland had a certain impact on the variability of sea ice edge. Meridional wind in Fram Strait, which drove ice transport from the Arctic Ocean to the Greenland Sea and then produced lagging effect on the distribution of the Greenland Sea ice edge, played a more important role than local wind field on ice edge variations.

中图分类号: 

[1]Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking  sea-ice cover[J]. Science, 2007, 315: 1 533-1 536.

[2]Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic Sea ice extents, areas and trends, 1978-1996[J]. Journal of Geophysical Research, 1999, 104(C9): 20 837-20 856.

[3]Tucker W B III, Weatherly J W, Eppler D T, et al. Evidence for rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s[J]. Geophysical Research Letters, 2001, 28: 2 851-2 854.

[4]Bjrk G. The relation between ice deformation, oceanic heat flux and the ice thickness distribution in the Arctic Ocean[J]. Journal of Geophysical Research, 1997, 102(C8): 18 681-18 698.

[5]Holloway G, Sou T. Has Arctic Sea ice rapidly thinned?[J]. Journal of Climate, 2002, 15: 1 691-1 701.

[6]Polyakov V I, Alekseev G V, Bekryaev R V, et al. Long-term ice variability in Arctic marginal seas[J]. Journal of Climate, 2003, 16(12): 2 078-2 085.

[7]Polyakov I V, Johnson M A. Arctic decadal and interdecadal variability[J]. Geophysical Research Letters, 2000, 27: 4 097-4 100.

[8]Deser C, Walsh J E, Timlin M S. Arctic Sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13: 617-633.

[9]Dickson B. All changes in the Arctic[J]. Nature, 1999, 397:389-391.

[10]Zhao Jinping, Zhu Dayong, Shi Jiuxin. Seasonal variations in sea ice and its main driving factors in the Chukchi Sea[J]. Advances in Marine Science, 2003, 21(2):123-131.[赵进平, 朱大勇, 史久新. 楚科奇海海冰周年变化特征及其主要关联因素[J]. 海洋科学进展, 2003, 21(2): 123-131.]

[11]Zhu Dayong, Zhao Jinping, Shi Jiuxin. Study on the multiyear variations of sea ice cover of Chukchi Sea in Arctic Ocean[J]. Acta Oceanologica Sinica, 2007, 29(2):25-33.[朱大勇, 赵进平, 史久新. 北极楚科奇海海冰面积多年变化的研究[J]. 海洋学报, 2007, 29(2): 25-33.]

[12]Li Tao, Zhao Jinping, Zhu Dayong. Variations of sea ice cover in East Siberian Sea of Arctic Ocean in 1997-2005[J]. Journal of Glaciology and Geocryology, 2009, 31(2):822-828.[李涛, 赵进平, 朱大勇. 1997—2005年北极东西伯利亚海海冰变化特征研究[J]. 冰川冻土, 2009, 31(5): 822-828.]

[13]Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research, 1989,94(C10): 14 485-14 498.

[14]Belkin I M, Levitus S, Antonov J, et al. “Great Salinity Anomalies” in the North Atlantic[J]. Progress in Oceanography, 1998,41(1):1-68.

[15]Thorndike A S,Colony R. Sea ice motion in response to geostrophic winds[J]. Journal of Geophysical Research, 1982, 87(C8): 5 845-5 852.

[16]Hkkinen S.Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing[J]. Journal of Geophysical Research, 1995, 100(C3): 4 761-4 770.

[17]Schneider W, Budéus G. Summary of the Northeast Water polynya formation and development (Greenland Sea)[J]. Journal of Marine Systems, 1997, 10:107-122.

[18]Klein T, Heinemann G. Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland[J]. Meteorological Applications, 2002,9:407-422.

[19]Heinemann G. Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets[J]. The Global Atmosphere  and Ocean System, 2003,9(4): 169-201.

[20]Ogi M, Rigor I G, McPhee M G, et al. Summer retreat of Arctic Sea ice: Role of summer winds[J]. Geophysical Research Letters, 2008, 35(24), doi: 10.1029/2008GL035672.

[21]Liston G E, Mernild S H. Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated landscapes (hydroFlow)[J]. Journal of Climate, 2011, 25: 5 997-6 014.

[22]Bamber J L, Broeke M R, Ettema J, et al. Recent large increases in freshwater fluxes from Greenland into the North Atlantic[J]. Geophysical Research Letters, 2012, 39(19), doi: 10.1029/2012GL052552.

[23]Shuchman R A, Josberger E G, Russel C A, et al. Greenland Sea Odden sea ice feature: Intra-annual and interannual variability[J]. Journal of Geophysical Research, 1998,103(C6): 12 709-12 724.

[24]Germe A, Houssais M N, Herbaut C, et al. Greenland Sea sea ice variability over 1979-2007 and its link to the surface atmosphere[J]. Journal of Geophysical Research, 2011, 116(C10), doi: 10.1029/2011JC006960.

[25]Pedersen J B T, Kaufmann L H, Kroon A, et al. The Northeast Greenland Sirius Water Polynya dynamics and variability inferred from satellite imagery[J]. Geografisk Tidsskrift, 2010, 110(2): 131-142.

[26]Van Angelen J H, Van den Broeke M R, Kwok R. The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait[J]. Geophysical Research Letters, 2011, 38(12), doi: 10.1029/2011GL047837.

[27]Martin T, Wadhams P. Sea-ice flux in the East Greenland Current[J]. Deep-Sea Research II, 1999, 46: 1 063-1 082.

[28]Zhang H, Gudmandsen P. Relation between ice motion observed from AVHRR and wind in the Greenland Sea[C]∥International Geoscience and Remote Sensing Symposium, Remote Sensing: Global Monitoring for Earth Management. Helsinki: University of Denmark, 1991.

[29]Kwok R, Rothrock D A. Variability of Fram Strait ice flux and North Atlantic Oscillation[J]. Journal of Geophysical Research, 1999, 104(C3):5 177-5 189.

[30]Smedsrud L H, Sirevaag A, Kloster K, et al. Recent wind driven high sea ice export in the Fram Strait contributes to Arctic Sea ice decline[J]. The Cryosphere, 2011, doi: 10.5194/tcd-5-1311-2011.

[31]Zhang J, Lindsay R, Steele M, et al. What drove the dramatic retreat of arctic sea ice during summer 2007?[J]. Geophysical Research Letters, 2008, 35(11), doi: 10.1029/2008GL034005.

[1] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[2] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[3] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[4] 王建丰, 王玉, 王刚. 基于FVCOM数值模拟和观察资料的长江冲淡水转向机制分析[J]. 地球科学进展, 2012, 27(2): 194-201.
[5] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[6] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[7] 周海光. 机载多普勒天气雷达及应用研究进展[J]. 地球科学进展, 2010, 25(5): 453-462.
[8] 任建奇,严卫,叶晶,韩丁. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1051-1060.
[9] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
[10] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[11] H.Ishikawa,K.Tanaka,Y.Oku,马耀明,胡泽勇,李茂善,马伟强. 利用场地观测计算地表通量[J]. 地球科学进展, 2006, 21(12): 1237-1243.
[12] 姚清林;强祖基;王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展, 2005, 20(5): 505-510.
[13] 王开存;周秀骥;李维亮;刘晶淼;王普才. 利用卫星遥感资料反演感热和潜热通量的研究综述[J]. 地球科学进展, 2005, 20(1): 42-048.
[14] 马建文;田国良;王长耀;燕守勋. 遥感变化检测技术发展综述[J]. 地球科学进展, 2004, 19(2): 192-196.
[15] 范一大,史培军,罗敬宁. 沙尘暴卫星遥感研究进展[J]. 地球科学进展, 2003, 18(3): 367-373.
阅读次数
全文


摘要