地球科学进展 ›› 2013, Vol. 28 ›› Issue (3): 347 -356. doi: 10.11867/j.issn.1001-8166.2013.03.0347

综述与评述 上一篇    下一篇

湖泊数值模拟研究现状综述
任晓倩 1,2,孙菽芬 3,陈 文 1,刘辉志 4   
  1. 1.中国科学院大气物理研究所季风系统研究中心,北京〓100190;2.中国科学院大学,北京 100049;
    3.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;
    4.中国科学院大气物理研究所大气边界层和大气化学国家重点实验室,北京 100029
  • 收稿日期:2012-11-19 修回日期:2013-01-05 出版日期:2013-03-10
  • 基金资助:

    国家自然科学基金重点项目“青藏高原地区地气相互作用和陆面物理过程模式创建研究”(编号:41030106);国家自然科学基金项目“通用土壤—雪盖耦合模型的改进和SSiB和WRF-SSiB模型的耦合研究”(编号:41275003)资助.

A Review of Researches on the Lake Numerical Modeling

Ren Xiaoqian 1,2, Sun Shufen 3, Chen Wen 1, Liu Huizhi   

  1. 1.Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190,China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China;3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;4.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2012-11-19 Revised:2013-01-05 Online:2013-03-10 Published:2013-03-10

作为陆面过程的重要组成部分,湖泊在天气气候预测中的作用得到了相关研究者的广泛关注,并成为大气科学研究领域中的一个热点。主要综述了当前湖泊模式的基本类型、所考虑的关键物理过程及其参数化方案,并尝试分析了各个方案的优劣以及模拟效果。相关研究表明,现有的湖泊模式对浅湖的模拟比较成熟,而对深湖和冰湖的模拟有待改进。未来的研究亟需构筑适用于大湖、深湖以及冰湖的参数化方案,发展能全面模拟各类型湖泊的数值模式,并且湖泊数值模拟的改进依赖于今后更多高质量的全球湖泊观测结果。

As an important component of land surface, the lake has been paid wide attention because of its role in the weather and climate prediction. And the related researches become a hot topic in the atmospheric science. This paper mainly summaries the basic classification, current understanding of the physical processes and parameterization schemes in the lake models. We further discuss the advantages and disadvantages of different schemes and compare their simulation results. Current lake models show a better simulation on the shallow lake, and need improvement in the deep and/or freezing lake simulations. Future work are required to build new parameterization schemes suitable for the deep, large and freezing lakes, and to construct new models suitable for all types of lakes. Any improvement in the lake models is suggested to be strongly dependent on the observational data of global lakes with high quality in the future.

中图分类号: 

[1Ke Changqing. A review of monitoring lake environment change by means of remote sensing[J]. Transactions of Oceanology and Limnology, 2004, (4): 81-86.[柯长青. 湖泊遥感研究进展[J]. 海洋湖沼通报, 2004,(4): 81-86.]

[2Downing J A, Prairie Y T, Cole J J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology and Oceanography, 2006, 51(5): 2 388-2 397.

[3Salgado R, Le Moigne P. Coupling of the FLake model to the surfex externalized surface model[J]. Boreal Environment Research, 2010, 15(2): 231-244.

[4Duguay C R, Flato G M, Jeffries M O, et al. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrological Processes, 2003, 17(17): 3 465-3 483.

[5Liu A Q, Moore G W K. Lake-effect snowstorms over southern Ontario, Canada, and their associated synoptic-scale environment[J]. Monthly Weather Review, 2004, 132(11): 2 595-2 609.

[6Laird N F, Desrochers J, Payer M. Climatology of lake-effect precipitation events over Lake Champlain[J]. Journal of Applied Meteorology and Climatology, 2009, 48(2): 232-250.

[7Dutra E, Stepanenko V M, Balsamo G, et al. An offline study of the impact of lakes on the performance of the ECMWF surface scheme[J]. Boreal Environment Research, 2010, 15(2): 100-112.

[8Xu Guiquan, Song Defan, Huang Shili, et al. Hydraulics and water quality model for Tidal river network and numerical simulation[J]. Journal of Basic Science and Engineering, 1996, 4(1): 94-105.[徐贵泉, 宋德蕃, 黄士力,等. 感潮河网水量水质模型及其数值模拟[J]. 应用基础与工程科学学报, 1996, 4(1): 94-105.]

[9Jin Lahua, Lin Bo. Approximate analytic solution of water quality model for a shallow water group[J]. China Enviromental Science, 1995, 15(1): 59-63.[金腊华,林波. 浅水湖泊群水质模型的近似解析解法[J]. 中国环境科学, 1995, 15(1):59-63.]

[10Sun Shufen, Yan Jinfeng, Xia Nan, et al. The model study of water mass and energy exchange between the inland water body and atnosphere[J]. Science in China (Series G), 2008, 38(6): 704-713. [孙菽芬, 颜金凤, 夏南, 等. 陆面水体与大气之间的热传输研究[J]. 中国科学: G辑, 2008, 38(6): 704-713.]

[11Zhou Congzhi, Chapra S C. Simulation of thermal structure and evaporation for lakes[J]. Environmental Science, 1993, 15(2): 33-38.[周从直, Chapra S C. 湖泊热结构和蒸发的模拟计算[J]. 环境科学, 1994, 15(2): 33-38.]

[12Stepanenko V M, Goyette S, Martynov A, et al. First steps of a lake model intercomparison project: LakeMIP[J]. Boreal Environment Research, 2010, 15(2): 191-202.

[13Goudsmit G H, Burchard H, Peeters F, et al. Application of k-ε turbulence models to enclosed basins: The role of internal seiches[J]. Journal of Geophysical Research, 2002, 107(C12): 3 230-3 242.

[14Joehnk K, Umlauf L. Modelling the metalimnetic oxygen minimum in a medium sized alpine lake[J]. Ecological Modelling, 2001, 136(1): 67-80.

[15Stepanenko V M, Lykosov V N. Numerical simulation of heat and moisture transport in the “lake-soil” system[J]. Russian Journal of Meteorology and Hydrology, 2005, (3): 95-104.

[16Imberger J, Patterson J C. Dynamic reservoir simulation model- DYRESM: 5[C]∥Transport Models for Inland and Coastal Waters, New York:Academic Press, 1981.

[17Hostetler S W, Bates G T, Giorgi F. Interactive coupling of a lake thermal model with a regional climate model[J]. Journal of Geophysical Research, 1993, 98(D3): 5 045-5 057.

[18Fang X, Stefan H G. Long-term lake water temperature and ice cover simulations/measurements[J]. Cold Regions Science and Technology, 1996, 24(3): 289-304.

[19Mironov D V. Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model, COSMO Technocal Report 11[R]. Deutscher Wetterdienst, Offenbach am Main, Germany, 2008.

[20Mironov D V. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO[J]. Boreal Environment Research, 2010, 15:218-230.

[21Goyette S, McFarlane N A, Flato G M. Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: Implementation of a lake model[J]. Atmosphere-Ocean, 2000, 38(3): 481-503.

[22Henderson-Sellers B, Davies A M. Thermal stratification modeling for oceans and lakes[J]. Annual Reviews of Heat Transfer, 1989, 2(2): 86-156.

[23Hostetler S W, Bartlein P J. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon[J]. Water Resources Research, 1990, 26(10): 2 603-2 612.

[24Ljungemyr P, Gustafsson N, Omstedt A. Parameterization of lake thermodynamics in a high-resolution weather forecasting model[J]. Tellus A, 1996, 48(5): 608-621.

[25Kitaigorodskii S A, Miropolsky Y Z. On the theory of the open ocean active layer[J]. Izvesti[AKa^] Akademi Nauk: Fizika Atmosfery I Okeana, 1970, 6: 178-188.

[26Martynov A, Sushama L, Laprise R. Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models[J]. Boreal Environment Research, 2010, 15(2): 143-164.

[27Henderson-Sellers B. New formulation of eddy diffusion thermocline models[J]. Applied Mathematical Modelling, 1985, 9(6): 441-446.

[28Bates G T, Hostetler S W, Giorgi F. Two-year simulation of the Great Lakes region with a coupled modeling system[J]. Monthly Weather Review, 1995, 123(5): 1 505-1 522.

[29Hostetler S W, Benson L V. Paleoclimatic implications of the high stand of Lake Lahontan derived from models of evaporation and lake level[J]. Climate Dynamics, 1990, 4(3): 207-217.

[30Hostetler S W, Small E E. Response of north American freshwater lakes to simulated future climates1[J]. JAWRA Journal of the American Water Resources Association, 1999, 35(6): 1 625-1 637.

[31Hostetler S W, Giorgi F. Use of a regional atmospheric model to simulate lake-atmosphere feedbacks associated with Pleistocene lakes Lahontan and Bonneville[J]. Climate Dynamics, 1992, 7(1): 39-44.

[32Bonan G B. Sensitivity of a GCM simulation to inclusion of inland water surfaces[J]. Journal of Climate, 1995, 8(11): 2 691-2 704.

[33Gu R, Stefan H G. Numerical Simulation of Stratification Dynamics and Mixing in Wastewater Stabilization Ponds[R]. Minn: Progect Report No.316 St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, 1991.

[34Gu R, Stefan H G. Year-round temperature simulation of cold climate lakes[J]. Cold Regions Science and Technology, 1990, 18(2):147-160.

[35Hondzo M, Ellis C R, Strefan H G.Vertical diffusion in small stratified lake: Data and error analysis[J]. Journal of Hydraulic Engineering, 1991, 117(10):1 352-1 369.

[36Riley M J, Stefan H G. MINLAKE: A dynamic lake water quality simulation model[J]. Ecological Modelling, 1988, 43(3): 155-182.

[37Mellor G L, Yamada T. Development of a turbulengce closure model for geophysical fluid problems[J]. Reviews of Geophysics and Space Physics, 1982, 20(4): 851-875.

[38Mellor G L,Yamada T. A hierarchy of turbulence closure models for planetary boundary layers[J]. Journal of the Atmospheric Sciences,1974, 31(7): 1 791-1 806.

[39Subin Z M, Riley W J, Mironov D. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[J]. Journal of Advances in Modeling Earth Systems, 2012, 4(M02001): 27.

[40Perroud M, Goyette S, Martynov A, et al. Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models[J]. Limnology and Oceanography, 2009, 54(5): 1 574-1 594.

[41Birge E A, Juday C, March H W. The temperature of the bottom deposits of Lake Mendota: A chapter in the heat exchanges of the lake[J].Transactions of the Wisconsin Academy of Sciences,Arts,and Letters, 1927, 23: 187-231.

[42Pivovarov A A. Thermal Conditions in Freezing Lakes and Rivers[M]. New York: Wiley, 1973.

[43Ryanzhin S V. Thermophysical Properties of Lake Sediments and Water-Sediments Heat Interaction, Report No.3214[R]. Sweden: Department of Water Resources Engineering, Institute of Technology, University of Lund, 1997.

[44Fang X, Stefan H G. Dynamics of heat exchange between sediment and water[J]. Water Resources Research, 1996, 32(6): 1 719-1 727.

[45Terzhevik A, Golosov S, Palshin N, et al. Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia[J]. Aquatic Ecology, 2009, 43(3): 617-627.

[46Hobbie J E. Arctic limnology: A review[J]. Alaskan Arctic Tundra, 1973, 25: 127-168.

[47Fang X, Stefan H G. Temperature variability in lake sediments[J]. Water Resources Research, 1998, 34(4): 717-729.

[48MacKay M D, Neale P J, Arp C D, et al. Modeling lakes and reservoirs in the climate system[J]. Limnology and Oceanography, 2009, 54(6): 2 315-2 329.

[49Tsay T K, Ruggaber G J, Effier S W. Thermal stratification modeling of lake with sediment heat flux[J]. Journal of Hydraulic Engineering, 1992, 118(3): 407-419.

[50Golosov S D, Kreiman K D. Heat exchange and thermal structure within “water-sediments” system[J]. Water Resources(Vodnye Resursy), 1992, 6: 92-97.

[51Golosov S, Zverev I, Terzhevik A. Modelling Thermal Structure and Heat Interaction between a Water Column and Bottom Sediments, Report No.3220 [R]. Sweden: Department of Water Resources Engineering, Institute of Technology, University of Lund, 1998.

[52Mironov D V, Golosov S D, Zverev I S. Temperature profile in lake bottom sediments: An analytical selfsimilar solution[C]∥Proceedings of the 7th Workshop on Physical Processes in Natural Waters.Northern Water Problems Institute of the Russian Academy of Sciences, Petrozavodask, Karelia, 2003.

[53Bates R E, Bilello M A. Defining the Cold Regions of the Northern Hemosphere[R]. Technical Report 178 of the Cold Regions Research and Engineering Laboratory(CRREL), Hanover, N.H.,1966.

[54Walsh S E, Vavrus S J, Foley J A, et al. Global patterns of lake ice phenology and climate: Model simulations and observations[J]. Journal of Geophysical Research, 1998, 103(D22): 28 825-28 837.

[55Launiainen J, Cheng B. Modelling of ice thermodynamics in natural water bodies[J].Cold Regions Science and Technology, 1998, 27(3): 153-178.

[56Liston G E, Hall D K. Sensitivity of lake freeze-up and break-up to climate chang: A physical based modeling study[J]. Annals of Glaciology, 1995, 21: 387-393.

[57Fang X, Ellis C R, Stefan H G. Simulation and observation of ice formation (freeze-over) in a lake[J]. Cold Regions Science and Technology, 1996, 24(2): 129-145.

[58Ashton G D, River and Lake Ice Engineering[M].Littleton, Colorado: Water Resources Publications, 1986.

[59Ashton G D, Mulherin N D. Prediction of reservoir freeze over[C]∥IAHR Ice Symposium. Espoo,1990.

[60Williams G.  Correlating freeze-up and break-up with weather conditions[J]. Canadian Geotechnical Journal, 1965, 2(4): 313-326.

[61Bernhardt J, Engelhardt C, Kirillin G, et al. Lake ice phenology in Berlin-Brandenburg from 1947-2007: Observations and model hindcasts[J]. Climatic Change, 2012, 112(3): 791-817.

[62Magnuson J J, Robertson D M, Benson B J, et al. Historical trends in lake and river ice cover in the Northern Hemisphere[J]. Science, 2000, 289(5 485): 1 743-1 746.

[63Leppranta M. A review of analytical models of sea-ice growth[J]. Atmosphere-Ocean, 1993, 31(1): 123-138.

[64Maykut G A, Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice[J]. Journal of Geophysical Research, 1971, 76(6): 1 550-1 575.

[65Patterson J C, Hamblin P F. Thermal simulation of a lake with winter ice cover[J]. Limnology and Oceanography, 1988, 33(3): 323-338.

[66Leppranta M. Modelling the formation and decay of lake ice[M]∥George G ed.Impact of Climate Change on European Lakes. Britain: Springer Netherlands, 2010.

[67Semmler T, Cheng B, Yang Y, et al. Snow and ice on Bear Lake (Alaska)-sensitivity experiments with two lake ice models[J]. Tellus A, 2012, 64: 17 339.

[68Yang Y, Leppranta M, Cheng B, et al. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland[J]. Tellus A, 2012, 64: 17 202.

[69Fang X, Stefan H G. Potential climate warming effects on ice covers of small lakes in the contiguous US[J]. Cold Regions Science and Technology, 1998, 27(2): 119-140.

[70Filyushkin B N, Miropolsky Y Z. Seasonal variability of the upper thermocline and self-similarity of temperature profiles[J]. Okeanologia, 1981, 21: 416-424.

[71Blumberg A F, Mellor G L. A coastal ocean numerical model[J]. Lecture Notes on Coastal and Estuarine Studies, 1980, 1: 203-219.

[72Hodges B, Dallimore C. Estuary, Lake and Coastal Ocean Model: ELCOM[Z]. v2.2 Science Manual. Centre of Water Research. University of Western Australia, 2006.

[73Gronewold A D, Fortin V. Advancing Great Lakes hydrological science through targeted binational collaborative research[J]. Bulletin of the American Meteorological Society, 2012, 93: 1 921-1 925.

[74Swayne D, Lam D, MacKay M, et al. Assessment of the interaction between the Canadian Regional Climate Model and lake thermal-hydrodynamic models[J]. Environmental Modelling & Software, 2005, 20(12): 1 505-1 513.

[75Song Y, Semazzi F H M, Xie L, et al. A coupled regional climate model for the Lake Victoria basin of East Africa[J]. International Journal of Climatology, 2004, 24(1): 57-75.

[76Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes[J]. Aquatic Botany, 1986, 26: 341-370.

[77Scheffer M. Ecology of Shallow Lakes[M]. London: Chapman and Hall, 1998.

[78Madsen J D, Chambers P A, James W F, et al. The interaction between water movement, sediment dynamics and submersed macrophytes[J]. Hydrobiologia, 2001, 444(1): 71-84.

[79Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension[J]. Ecological Studies, 1998, 131: 197-214.

[80Herb W R, Stefan H G. Dynamics of vertical mixing in a shallow lake with submersed macrophytes[J]. Water Resources Research, 2005, 41(2): W02023.
[1] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[2] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[3] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[4] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[5] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[6] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[7] 宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J]. 地球科学进展, 2012, 27(5): 539-548.
[8] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[9] 王晓君,马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1191-1199.
[10] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[11] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[12] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[13] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
阅读次数
全文


摘要