地球科学进展 ›› 2012, Vol. 27 ›› Issue (7): 725 -732. doi: 10.11867/j.issn.1001-8166.2012.07.0725

综述与评述 上一篇    下一篇

陆地硅的生物地球化学循环研究进展
陶贞 1,2,张超 1,高全洲 1,李元 1   
  1. 1.中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,广东广州510275;
    2.华南地区水循环与水安全广东省普通高校重点实验室,广东广州510275
  • 收稿日期:2012-03-26 修回日期:2012-05-21 出版日期:2012-07-10
  • 通讯作者: 陶贞(1965-), 女,河南沁阳人,副教授, 主要从事全球变化及其区域响应研究. E-mail:taozhen@mail.sysu.edu.cn
  • 基金资助:

    国家自然科学基金项目“青藏高原高寒草甸土壤碳循环同位素示踪研究”(编号:40871143)和“人类活动干预下的流域地表过程在河流碳循环中的响应”(编号:41071054);中国地质调查局地调项目“中国岩溶碳汇动态评价”(编号:岩[2011]地调010123)资助. 

A Review of the Biogeochemical Cycle of Silicon in Terrestrial Ecosystems

Tao Zhen 1,2, Zhang Chao 1, Gao Quanzhou 1, Li Yuan 1   

  1. 1. Geography and Planning School of Sun Yat-Sen University,  Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou510275, China;
    2. Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou510275, China
  • Received:2012-03-26 Revised:2012-05-21 Online:2012-07-10 Published:2012-07-10

地球表层硅 (Si) 的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。

The biogeochemical cycle of silicon on the Earth’s surface has become a crucial subject of studying  global environmental change because of its interconnetion with those processes of the changes of atmospheric CO2 concentration, the oceanic biological pump and the coastal eutrophication. On geological time scales, the chemical weathering of silicate minerals is considered to be the source of overall secondary Si on the Earth′s surface. There are different formation mechanisms and the driving factors for different secondary Si pools in the terrestrial biogeosystems, which leads to the difference in the reservoir and turnover time for those Si pools. Secondary silicates in the soils, dissolved Si (DSi) and amorphous silica precipited on surfaces of other minerals are all sourced from the chemical weathering of silicates; phytogenic Si (BSi) is formed in the growth process of the plants in which the DSi was uptake from the soil. Then, the BSi is subsequently returned to soils; terrestrial Si was also transported to the river and ocean by surface runoff in particulate and dissolved forms. Up to date, there are still a great number of uncertainties in understanding  the terrestrial Si cycle concerning the size of various Si pools and their contribution to the global silicon cycle. Hence, it is necessary to consider comprehensively various land surface processes and their coupling effect in the study  of the silicon biogeochemical cycles in the terrestrial ecosystems.

中图分类号: 



[1]Wedepohl K H. The composition of the continental crust

[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1 217-1 232.



[2]Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers

[J]. Chemical Geology, 1999, 159(1/4): 3-30.



[3]Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy

[J]. Global and Planetary Change, 2000, 26(4): 317-365.



[4]Alexandre A, Meunier J D, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes

[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677-682.



[5]Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering

[J]. American Journal of Science, 2000, 300(7): 539-570.



[6]Ittekot V, Unger D, Humborg C, et al. The Silicon Cycle

[M]. Washington DC: Island Press, 2006.



[7]Street-Perrott F A, Barker P A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon

[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1 436-1 457.



[8]Struyf E, Conley D J. Silica: An essential nutrient in wetland biogeochemistry

[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 88-94.



[9]Ding T P, Gao J F, Tian S H, et al. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle

[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6 672-6 689.



[10]Meunier J D, Colin F, Alarcon C. Biogenic silica storage in soils

[J]. Geology, 1999, 27(9): 835-838.



[11]Clarke J. The occurrence and significance of biogenic opal in the regolith

[J]. Earth Science Reviews, 2003, 60(3/4): 175-194.



[12]Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review

[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 310-329.



[13]Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle

[J]. Global Biogeochemical Cycles, 2002, 16(4): 1 121-1 129.



[14]Derry L A, Kurtz A C, Ziegler K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds

[J]. Nature,2005, 433(7 027): 728-731.



[15]Meunier J D, Kirman S, Strasberg D, et al. The output and bio-cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island)

[J]. Geoderma, 2010, 159(3/4): 431-439.



[16]Urey H C. The Planets, Their Origin and Development

[M]. New Haven: Yale University Press, 1952.



[17]Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate

[J]. Science, 1995, 268(5 209): 375-379.



[18]Meybeck M. How to establish and use world budgets of riverine materials

[C]Lerman A, Meybeck M, eds. Physical and Chemical Weathering in Geochemical Cycles. Dordrecht: Kluwer Academic Publisher, 1988: 247-272.



[19]Murname R J, Stallard R F. Germanium and silicon in rivers of the Orinoco Drainage Basin

[J]. Nature, 1990, 344(6 268): 749-752.



[20]Gao Q Z, Tao Z, Huang X K, et al. Chemical weathering and CO2 consumption in the Xijiang River Basin, South China

[J]. Geomorphology, 2009, 106(3/4): 324-332.



[21]Gao Q Z, Tao Z. Chemical weathering and chemical runoff in the seashore granite hills in South China

[J]. Science in China (Series D),2010, 53(8): 1 195-1 204.



[22]Tao Z, Gao Q Z, Wang Z G, et al. Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin

[J]. Chinese Science Bulletin, 2011, 56(35): 3 774-3 782.



[23]Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads

[J]. American Journal of Science, 1987, 287(5): 401-428.



[24]Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra River: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya

[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2 907-2 935.



[25]Wu W H, Xu S J, Yang J D, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau

[J]. Chemical Geology, 2008, 249(3/4): 307-320.



[26]McLennan S M. Weathering and global denudation

[J]. Journal of Geology, 1993, 101(2): 295-303.



[27]Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins

[J]. Journal of Geophysical Research, 1994, 99(B7): 13 871-13 883.



[28]Milliman J D, Meade R H. World-wide delivery of sediment to the oceans

[J]. Journal of Geology, 1983, 91(1): 1-21.



[29]Monger H C, Kelly E F. Silica minerals

[C]Dixon J B, Schulze D G. Soil Mineralogy with Environmental Applications. Book Series SSSA No.7, Madison, 2002: 611-636.



[30]Gerard F, Francois M, Ranger J. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France)

[J]. Geoderma, 2002, 107(3/4): 197-226.



[31]Farmer V C, Lumsdon D G. An assessment of complex formation between aluminum and silicic acid in acidic solutions

[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 331-3 334.



[32]Dove P M. Kinetic and thermodynamic controls on silica reactivity in weathering environments

[C]White A F, Brantley S L, eds. Chemical Weathering Rates of Silicate Minerals: Reviews in Mineralogy. 1995,31(1): 235-290.



[33]Dietzel M. Interaction of polysilicic and monosilicic acid with mineral surfaces

[C]Stober I, Bucher K, eds. Water-Rock Interaction. Netherlands: Kluwer, 2002: 207-235.



[34]Dietzel M. Dissolution of silicates and the stability of polysilicic acid

[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3 275-3 281.



[35]Richards P L, Kump L R. Soil pore-water distribution and the temperature feedback of weathering in soils

[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3 803-3 815.



[36]Komor S C. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA

[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 353-3 367.



[37]Bennet P C, Siegel D I, Hill B M, et al. Fate of silicate minerals in a peat bog

[J]. Geology, 1991, 19(4): 328-331.



[38]Jones L H P, Handreck K A. Silica in soils, plants, and animals

[J]. Advances in Agronomy, 1967, 19: 107-149.



[39]Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget

[J]. Limnology and Oceanography, 1997, 42(4): 774-777.



[40]Ding Tiping.Silicon Istope Geochemistry

[M].Beijing: Geological Publishing House,1994:17-63.

[丁悌平. 硅同位素地球化学

[M]. 北京: 地质出版社, 1994:17-63.]



[41]Van Cappellen P. Biomineralization and global biogeochemical cycles

[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 357-381.



[42]Lü Houyuan, Liu Tungsheng, Wu Naiqin, et al. Phytolith record of vegetation succession in the southern loess plateau science Late Pleistocene

[J]. Quaternary Sciences, 1991, 19(4): 336-349.

[吕厚远,刘东生,吴乃琴, 等,末次间冰期以来黄土高原南部植被演替的植物硅酸体记录

[J]. 第四纪研究, 1999, 19(4): 336-349.]



[43]Van Hees P A W, Jones D L, Jentschke G, et al. Mobilization of aluminum, iron and silicon by Picea abies and ectomycorrhizas in a forest soil

[J]. European Journal of Soil Science, 2004, 55(1): 101-111.



[44]Smits M M, Hoffland E, Jongmans A G, et al. Contribution of mineral tunneling to total feldspar weathering

[J]. Geoderma, 2005, 125(1/2): 59-69.



[45]He Yue, Zhang Ganlin. Biogenic silicon in basalt-derived soils in Hainan Island and its implications in Pedogensis

[J].Acta Pedologica Sinica, 2010, 47(3): 385-392.

[何跃, 张甘霖. 热带地区玄武岩发育土壤中的生物硅及其发生学意义

[J]. 土壤学报, 2010, 47(3): 385-392.]



[46]Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems

[J]. Environmental Biogeochemistry and Ecology Bulletin, 1983, 35(35): 469-476.



[47]Cary L,Alexandre A,Meunier J D,et al. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong Basin rivers (Cameroon)

[J].Biogeochemistry, 2005,74(1):101-114.



[48]Lucas Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping

[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 135-163.



[49]Douthitt C B. The geochemistry of the stable isotopes of silicon

[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1 449-1 458.



[50]Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China

[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.



[51]Tu Guangzhi, Gao Zhenmin, Hu Ruizhong, et al. The Geochemistry and Depoist—Forming Mechanism of Disperse Element

[M]. Beijing: Geological Publishing House, 2004:10-117.

[涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制

[M]. 北京: 地质出版社, 2004:10-117.]



[52]Evans M J, Derry L A. Quartz control of high germanium/silicon ratios in geothermal waters

[J]. Geology, 2003, 30(11): 1 019-1 022.



[53]Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment

[J]. Geochimica et Cosmochimica Acta, 2002, 66(9): 1 525-1 537.



[54]Bernstein L R. Germanium geochemistry and mineralogy

[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2 409-2 422.



[55]Pokrovski G S, Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters

[J]. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3 413-3 428.



[56]Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry

[M]. Beijing: Science Press,1984.

[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学

[M]. 北京: 科学出版社, 1984.]



[57]Olivier R, Galy A, Elderfield H. Germanium isotopic variations in igneous rocks and marine sediments

[J]. Geochimica et Cosmochimica Acta,2006, 70(13): 3 387-3 400.



[58]Christoph Humborg, Venugo palan Ittekkot, Adriana Cociasu, et al. Effect of Danube River Dam on Black Sea biogeochemistry and ecosystem structure

[J]. Nature, 1997, 386(27): 385-388.



[59]Li Maotian, Cheng Heqin. Changes of dissolved silicate flux from the Changjiang River into sea and its influence since late 50 years

[J]. China Environmental Science, 2001, 21(3): 193-197.

[李茂田, 程和琴. 近50年来长江入海溶解硅通量变化及其影响

[J]. 中国环境科学, 2001, 21(3): 193-197.]



[60]Conley D J, Humborg C, Smedberg E, et al. Past, present and future state of the biogeochemical Si cycle in the Baltic Sea

[J]. Journal of Marine Systems, 2008, 73(3/4): 338-346.



[60]Syvitski J P M, Vorosmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean

[J]. Science, 2005, 308(5 720): 376-380.



[61]Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower Great Lakes: New evidence from biogenic silica in sediments

[J]. Science, 1983, 222(4 621): 320-322.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[15] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
阅读次数
全文


摘要