地球科学进展 ›› 2012, Vol. 27 ›› Issue (6): 686 -693. doi: 10.11867/j.issn.1001-8166.2012.06.0686

所属专题: IODP研究

IODP研究 上一篇    下一篇

利用有孔虫壳体B/Ca比值再造古海水pH值及[CO 2- 3]的潜力
乔培军,王婷婷,翦知湣   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2012-05-10 修回日期:2012-05-21 出版日期:2012-06-10
  • 通讯作者: 乔培军(1979-),男,吉林桦甸人,讲师,主要从事古海洋学、沉积地球化学研究.  E-mail:qiaopeijun@tongji.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“南海晚新生代中层水和深层水的演变及其全球意义”(编号:91028004);国家自然科学基金项目“低纬西太平洋末次盛冰期以来的气候环境变化及其全球影响”(编号:41023004);国家高技术研究发展计划项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Potential of Foraminiferal B/Ca Ratios for Reconstructing Paleo-seawater pH and CO 2- 3 Concentrations

Qiao Peijun, Wang Tingting, Jian Zhimin   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
  • Received:2012-05-10 Revised:2012-05-21 Online:2012-06-10 Published:2012-06-10

有孔虫壳体B/Ca比值是一个极具潜力并且受到广泛关注的古海洋学方法,适用于恢复古海水pH值及[CO2-3]。对于表层水,在一定条件下可以再造大气CO2浓度;对于深层水,可以指示洋流变化及水团变迁。且与硼同位素方法相比较,B/Ca比值分析更简易、稳定性更好,受溶解及沉积埋藏作用影响小,因而更适合于高分辨率的古海洋学分析。但是,由于该分析方法较新,与之相关的有孔虫吸收B元素的生物过程不是很清楚,采用B/Ca比值恢复pH值及[CO2-3]的机制也不是很了解,方法的建立主要基于经验公式基础之上,因而为该方法寻找理论基础是今后研究的一个重要方向。

 The analysis of foraminiferal B/Ca ratios is a greatly potential and widely concerned paleoceanographic method, which is applicable to the reconstruction of  the past pH and CO2-3  concentrations of sea water, and under certain situations also can also be used to reflect the changes of the atmospheric CO2 concentration from surface water, and indicate changes of ocean current and water mass of deep water. Compared with the conventional method of boron isotopes, the B/Ca ratio method is relatively easier, more stable, and less  affected less by dissolution and postdeposition alternations. As a result, it is relatively suitable for highresolution paleoceanographic studies. However, this method is comparably new. The foraminiferal biological processes to absorb boron element is still not very clear. Moreover, the mechanisms using B/Ca ratio to reconstruct pH and CO2-3  concentrations is not well accepted. As the method is constructed on the basis of empirical function, establishment of its theoretical basis will be the future and important development of this method.

中图分类号: 

[1]Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407: 859-869.
[2]Sanyal A, Bijma J, Spero H, et al. Empirical relationship between pH and the boron isotope composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy[J]. Paleoceanography, 2001,16(5): 515-519.
[3]Palmer M R, Pearson P N. A 23 000-year record of surface water pH and pCO2 in the western equatorial Pacific Ocean[J]. Science, 2003, 300(5 618): 480-482.
[4]Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 305-314.
[5]Simone A K, Daniela N S, Jelle B, et al. In situ boron isotope analysis in marine carbonates and its application for foraminifera and paleo-pH[J]. Chemical Geology, 2009, 260(1/2): 138-147.
[6]Yu J, Elderfield H, Hnisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22, doi:10.1029/2006PA001347.
[7]Yu J, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007,258(1/2):73-86.
[8]Foster G L. Seawater pH, pCO2 and [CO2-3] variations in the Caribbean Sea over the last 130 kyr:A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters,2008, 271: 254-266.
[9]Yu J, Foster G L, Elderfield H, et al. An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 114-120.
[10]Rae J W B, Foster G L, Schmidt D N, et al. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system[J]. Earth and Planetary Science Letters,2011, 302(3/4): 403-413.
[11]Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochemica Acta, 1992, 56(1): 537-543.
[12]Pagani M, Lemarchand D, Spivack A J, et al. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochimica et Cosmochemica Acta,2005, 69(4): 953-961.
[13]Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1990,37(5): 755-766.
[14]Sanyal A, Nugent M, Reeder R J, et al. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1 551-1 555.
[15]Sanyal A, Hemming N G, Broecker W S, et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments[J]. Paleoceanography,1996,11(5): 513-517.
[16]Sanyal A, Hemming N G, Gilbert N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature,1995, 373(6 511): 234-236.
[17]Wara M W, Delaney M L, Bullen T D, et al. Possible roles of pH, temperature and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera[J]. Paleoceanography, 2003, 18(4), doi:10.1029/2002PA000797.
[18]Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years[J]. Science, 2009, 326(5 958): 1 394-1 397.
[19]Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry Geophysics Geosystems,2003,4(9):1-20, doi:10.1029/2003GC000559.
[20]Boyle E, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215 000 years: Changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters,1985/86, 76: 135-150.
[21]Al-Ammar A, Gupta R K, Barnes R M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 55(6): 629-635.
[22]Yu J, Day J, Greaves M, et al. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS[J]. Geochemistry Geophysics Geosystems,2005,6:Q08P01,doi:10.1029/2005GC000964.
[23]Nürnberg D. Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes[J].Journal of Foraminiferal Research,1995, 25(4): 350-368.
[24]Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J].Paleoceanography,2003, 18(2): 1 050, doi:10.29/2002PA000826.
[25]Pelletier G, Lewis E, Wallace D. A calculator for the CO2 system in seawater for Microsoft Excel/VBA[Z]. Washington State Deptartment of Ecology, Olympia, 2005.
[26]Zeebe R E, Wolf-Gladrow. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Elsevier Oceanography Series,Netherlands: Elsevier, 2001:29.
[27]Lemarchand D, Gaillardet J, Lewin E, et al. Boron isotope systematics in large rivers:Implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic[J]. Chemical Geology, 2002, 190(1/4): 123-140.
[28]Simon L, Lecuyer C, Marechal C, et al. Modelling the geochemical cycle of boron: Implications for the long-term evolution of seawater and oceanic crust[J]. Chemical Geology, 2006, 225(1/2): 61-76.
[29]Uppstrom L R. Boron/chlorinity ratio of deep-sea water from pacific ocean[J].Deep Sea Research Oceanographic Abstracts, 1974, 21: 161-162.
[30]Yu J, Broecker W S, Elderfield H, et al. Loss of carbon from the deep sea since the Last Glacial Maximum[J]. Science, 2010, 330(6 007): 1 084-1 087.
[31]Takahashi T, Sutherland S, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Ⅱ, 2009, 56(8/10): 554-557.
[32]Tripati A K, Roberts C D, Eagle R A, et al. A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO2 reconstructions[J]. Geochimica et  Cosmochimica Acta, 2011, 75(10): 2 582-2 610.
[33]Hönisch B, Hemming N G, Archer D, et al. Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition[J]. Science, 2009, 324(5 934): 1 551-1 554.
[34]Lea D W, Boyle E A. Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans[J].Paleoceanography, 1990, 5(5): 719-742.
[35]Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)[J].Global Geochemical Cycles, 2004, 18:GB4031,doi:10.1029/2004GB002247.
[36]Broecker W S, Clark E. Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea[J]. Geochemistry Geophysics Geosystems,2002,3(3), doi:10.1029/2001GC000231.
[37]Allen K A, Hönisch B, Eggins S M, et al. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa[J].Earth and Planetary  Science Letters,2011, 309(3/4): 291-301.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[4] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[5] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[6] 赵奇,闫义. 伊利石 K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.
[7] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[8] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[9] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[10] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[11] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[12] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[13] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[14] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[15] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
阅读次数
全文


摘要