地球科学进展 ›› 2011, Vol. 26 ›› Issue (2): 235 -244. doi: 10.11867/j.issn.1001-8166.2011.02.0235

生态学研究 上一篇    

干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展
尹飞虎 1,李晓兰 1,董云社 1,2*,谢宗铭 1,高志建 1,何帅 1,刘长勇 1   
  1. 1. 新疆农垦科学院,新疆石河子832000;2. 中国科学院地理科学与资源研究所,北京100101
  • 收稿日期:2010-04-07 修回日期:2010-09-14 出版日期:2011-02-10
  • 通讯作者: 董云社(1961-),男,陕西武功人,研究员,主要从事陆地表层生命元素环境生物地球化学循环研究.  E-mail:dongys@igsnrr.ac.cn
  • 基金资助:

    国家自然科学基金项目“CO2浓度升高对新疆干旱区棉花—土壤系统的影响机制及其与氮素的耦合作用”(编号:40973061);国家高技术研究发展计划项目“新疆干旱区现代节水农业技术研究与集成”(编号:2006AA100218);兵团科技攻关计划项目“碳素对棉花生长及产量影响机制的试验与示范”(编号:2006YD25)资助.

Effect of Elevated CO 2 on Ecosystem and C-N Coupling  in Arid and Semi-arid Region

Yin Feihu 1, Li Xiaolan 1, Dong Yunshe 1,2, Xie Zongming 1, Gao Zhijian 1, He Shuai 1   

  1. 1. Xinjiang Academy of Agricultural and Reclamation Science, Shihezi832000, China; 2. Institute of Geographic Science and Natural Resources Research, CAS, Beijing100101, China
  • Received:2010-04-07 Revised:2010-09-14 Online:2011-02-10 Published:2011-02-10

大气CO2浓度升高已成为全球备受关注的环境问题。CO2排放量的增加加剧了地球表层的温室效应,也对生态系统的结构和功能产生了重要影响。生态系统对CO2浓度升高的响应是一个长期的过程。在干旱半干旱区,CO2浓度的升高对生态系统生产力、植物、土壤和微生物等都有影响,尤其改变了生态系统中的碳循环,并加剧了生态系统对氮的需求。碳循环是生态系统重要的能量流通渠道;氮是生态系统最重要的营养元素之一,也是生态系统固碳能力的限制因子。因此,加强碳氮耦合关系的探讨对研究全球气候及生态系统变化具有重要意义。对干旱半干旱区CO2浓度升高对生态系统的影响及碳氮耦合的研究进展进行了综述和讨论,为进一步研究干旱半干旱区碳、氮循环提供参考。

Atmospheric CO2 concentrations had increased from approximately 280 μmol/mol  in the late 19th-century to over 360 μmol/mol  today. Elevated CO2not only pricked up global greenhouse effect, but also changed the C balance of global ecosystems, which led to the changes of ecosystem structure and function. Alterations in microbial mineralization and nutrient cycling may control the longterm response of ecosystems to elevated CO2. Elevated CO2concentrations influenced carbon cycle, ecosystem productivity, plant, soil, microbe, and other environmental factors. The effects of elevated CO2 on growth were highly dependent on interactions with N cycling. Particularly important was the effect of elevated CO2 on N cycling and availability because shortages in N could eventually attenuate the increased plant biomass production seen in shortterm elevated CO2 studies. Changes in microbial biomass C and N, microbial activity and inorganic N could indicate the effects of elevated CO2on N dynamics. Increases in N-use efficiency tended to increase the C/N ratio of plant materials grown in elevated CO2. The purpose of this paper  is to summarize the changes of ecosystems and C-N coupling due to the increasing atmospheric CO2concentration in order to lucubrate to carbon cycle and nitrogen cycle in arid and semi-arid region.

中图分类号: 

[1]Huang Zichen, Shen Weishou. Study on Water Relationship and Tolerance in Arid Area[M].Beijing: China Environment Science Press,2000.[黄子琛,沈渭寿.干旱区植物水分关系与耐旱性\[M\].北京:中国环境科学出版社,2000.]
[2]Goudie A S. Techniques for Desert Reclamation[M]. New York: Wiley & Sons, 1990.
[3]Zhou Weibo. Review on the study of water resources utilization efficiency in irrigation district in arid and semiarid areas of China[J].Journal of Arid Land Resources and Environment,2003, 17(5): 91-96.[周维博.干旱半干旱地域提高灌区水资源综合效益研究进展与思考[J].干旱区资源与环境, 2003, 17(5): 91-96.]
[4]Lal R. Carbon sequestration in drylands[J].Annals of Arid Zone,2000, 39(1): 1-10.
[5]Prentice I C, Farquhar G D, Fasham M J R,et al. The carbon cycle and atmospheric carbon dioxide[C]Houghton J T, Ding Y, Griggs D J,et al.eds. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 2001:183-237.
[6]Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur?[J]. Biogeochemistry,1991,13: 87-115.
[7]Ren Shujie, Cao Mingkui, Tao Bo,et al.The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A review[J].Progress in Geography,2006,25(4): 58-67.[任书杰,曹明奎,陶波,等.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展,2006,25(4): 58-67.]
[8]Pan Hongli, Zhao Xiulan, Xie Zubin, et al. Effect on soil microecosystem from free air CO2 enrichment [J].Yunnan Environmental Science,2005,24(4):6-9.[潘红丽,赵秀兰,谢祖彬,等.大气CO2浓度升高对农田生态系统的影响[J].云南环境科学,2005,24(4):6-9.]
[9]Lin Weihong. Response of photosynthesis to elevated atmospheric CO2[J].Acta Ecologica Sinica,1998,18:121-128.[林伟宏.植物光合作用对大气二氧化碳浓度升高的反应[J].生态学报,1998,18:121-128][ZK)]
[10]Ou Zhiying, Peng Changlian. Progress in studies on plant responses to elevated CO2[J]. Journal of Tropical and Subtropical Botany, 2003, 11(2):190-196.[欧志英,彭长连. 高浓度二氧化碳对植物影响的研究进展[J]. 热带亚热带植物学报, 2003,11(2):190-196.]
[11]Wang Weimin, Wang Chen, Li Chunjian,et al. Effects of elevated atmospheric CO2concentrations on growth of plants[J].Acta Botanica Boreal-Occident Sinica, 2000,20(4):676-683.[王为民,王晨,李春俭,等.大气二氧化碳浓度升高对植物生长的影响[J].西北植物学报, 2000,20(4):676-683.]
[12]Jiang Gaoming, Han Xingguo,Lin Guanghui. Response of plant growth to elevated[CO2]: A review on the chief methods and basic conclusions based on experiments in the external countries in past decade[J].Acta Phytoecologica Sinica,1997,21(6):489-502.[蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489-502.]
[13]Kimball B A, Manuey J R, Nakayama F S, et al. Effects of increasing atmospheric on CO2 vegetation[J].Vegetatio,1993,104/105: 65-75.
[14]Cure J D, Acock B. Crop responses to carbon dioxide doubling: A literature survey[J].Agricultural and Forest Meteorology,1986,38: 127-145.
[15]Poorter H.Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration[J].Vegetatio,1993, 104/105:77-79.
[16]Gao Suhua, Guo Jianping. Responses of Aneurolepidium Chinensisand Stipa Baicalensis to high CO2 concentration and soil drought[J].Journal of Soil and Water Conservation,2003, 23(6):12-14.[高素华, 郭建平.羊草、针茅对高CO2浓度及土壤干旱的响应[J].水土保持学报, 2003, 23(6):12-14.]
[17]Morgan J A, Legain D R, Mosier A R, et al. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe [J]. Global Change Biology,2001,7: 451-466.
[18]Stitt M. Rising CO2 lvels and their potential significance for carbon flow in photosynthetic cells[J].Plant, Cell and Environment,1991,14: 311-317.
[19]Huxman T E, Smith S D. Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave desert[J].Oecologia,2001,128: 193-201.
[20]Joel G, Chapin F S, Chiariello N R, et al. Species-specific responses of plant communities to altered carbon and nutrient availability[J].Global Change Biology, 2001,7: 435-450.
[21]Grünzweig J M, Körner C. Growth,water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO2[J].Oecologia,2001,128: 251-262.
[22]Gao Suhua, Guo Jianping. Responses of some dominant species in Maowusu sandland under high CO2 concentration to drought stress[J]. Journal of Soil and Water Conservation,2002, 16(6): 116-118.[高素华,郭建平.毛乌素沙地优势种在高CO2浓度条件下对土壤干旱胁迫的响应[J].水土保持学报,2002,16(6):116-118.]
[23]Hou Shaoli. Mechanical equipment of foreign dry farming[J].Adviser of Peasant Families,2010,3:27.[侯少丽.国外旱作农业机械化装备[J].农家参谋,2010,3:27.]
[24]Shangguan Zhouping, Chen Peiyuan. Future strategies for development of dryland farming in northern China [J].Exploration of nature,1995,14(52):86-89.[上官周平,陈培元.中国北方旱地农业发展的若干战略[J].大自然探索,1995,14(52):86-89.]
[25]Wang Xiulan, Xu Shihua, Liang Hong. The experimental study of the effects of CO2 concentration enrichment on growth,development and yield of C3 and C4 crops [J]. Scientia Agricultura Sinica,1998, 31(1):55-61.[王修兰,徐师华,梁红. CO2浓度增加对C3、C4作物生育和产量影响的实验研究[J].中国农业科学,1998,31(1):55-61.][26]Gifford R M, Lambers H, Morison J I L. Respiration of crop species under CO2 enrichment[J].Plant Physiol,1985,63:351-356.
[27]Ainsworth E A, Leakey A D B, Ort D R, et al. FACE-ing the facts: Inconsistencies and interdependence among field, chamber and modeling studies of elevated[CO2] impacts on crop yield and food supply[J].New Phytologist, 2008, 179(1):5-9.
[28]Leakey A D B,Uribelarrea M, Ainsoworth E A,et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J].Plant Physiology,2006, 140:779-790.
[29]Egli D B. Comparison of corn and soybean yields in the United States: Historical trends and future prospects[J].Agronomy Journal,2008, 100:79-88.
[30]Castro J C,  Dohleman F G,  Bernacchi C J,et al. Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE)[J].Journal of Expermental Botany,2009, 60:2 945-2 951.
[31]Wu Gang, Chen Fajun, Sun Yucheng,et al.Response of cotton to early-season square abscission under elevated CO2[J].Journal  of Agronomy,2007, 99:791-796.
[32]Wong S C. Elevated atmospheric partial pressure of CO2  and plant growth.Ⅱ. Nonstructural carbohydrate content in cotton plants and its effect on growth parameters[J].Photosynthesis Research, 1990, 23:171-180.
[33]Nie G Y, Long S P, Garcia R L, et al. Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins[J].Plant, Cell and Environment,1995, 18:855-864.
[34]Zhang Jiaen, Liu Wen′gao, Wang Weisheng. Effects of rhizosphere microbes and status of rihzosphere soil nutrients under different vegetations in south subtropical region[J].Soil and Environmental Sciences, 2002,17(4):38-41.[章家恩,刘文高,王伟胜.南亚热带不同植被根际微生物数量与根际土壤养分状况[J].土壤与环境, 2002,17(4):38-41.]
[35]Hu Junli, Lin Xiangui, Chu Haiyan, et al. A review on soil microbial responses to elevated atmospheric CO2 concentration[J].Chinese Journal of Soil Science, 2006, 37(3):601-605.[胡君利,林先贵,褚海燕,等.土壤微生物对大气CO2浓度升高的响应研究[J].土壤通报,2006, 37(3):601-605.]
[36]Lamborg M R,Hardy R W F, Paul E A. Microbial effects[C]Lemon E R,eds.The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Colorado:Westview Press,1983:131-176.
[37]Runion G B, Curl E A, Rogers H H, et al. Effects of free-air CO2 enrichment on microbial population in the rhizosphere and phyllosphere of cotton[J].Agricultural and Forest Meteorology,1994,70: 117-130.
[38]Zak D R, Pregiter U A, Luseher A,et al. Elevated atmospheric CO2 fine roots and the response of soil mico-organisms a review and hypothesise[J].New Phytologist, 2000, 147: 201-222.
[39]Rice C W, Garcia F O, Hampton C O, et al. Soil microbial response in tallgrass prairie to elevated CO2[J].Plant and Soil,1994, 165:67-74.
[40]Niklaus P A, Korner C. Responses of soil microbiota of a late successional alpine grassland to longterm CO2 enrichment[J].Plant and Soil,1996, 184:219-229.
[41]Fang Shibo, Feng Ling, Liu Huajie, et al. Responses of Biological Soil Crusts (BSC) from arid-semiarid habitats and polar region to global climate change[J].Acta Ecologica Sinica, 2008,28(7): 3 312-3 321.[房世波,冯凌,刘华杰,等.生物土壤结皮对全球气候变化的响应[J].生态学报, 2008, 28(7):3 312-3 321.]
[42]Li Xinrong, Jia Yukui, Long Liqun, et al. Advances in microbiotic soil crust research and its ecological significance in arid and semiarid regions[J].Journal of Desert Research, 2001, 21(1): 4-10.[李新荣,贾玉奎,龙立群,等. 干旱半干旱地区土壤微生物结皮的生态学意义及若干进展[J].中国沙漠, 2001, 21(1): 4-10.]
[43]Beymet R J, Klopatek J M. Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands[J].Arid Soil Research and Rehabilitation,1991, 5 (2) : 187-198.
[44]Sedia E G, Ehrenfeld J G. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands[J].Oecologia, 2005, 144 (1): 137-147.
[45]Deslippe J R, Egger K N, Henry G H R. Impacts of warming and fertilization on nitrogen 2 fixing microbial communities in the Canadian High Arctic[J].FEMS Microbiology Ecology,2005, 53(3): 41-50.
[46]Pan G,Guo T.Pedogenic carbonates in aridic soils of China and significance for terrestrial carbon transfer[C]Lal R, Kimble J, Eswaran H, eds.Global Climate Change and Pedogenic Carbonates. USA:Lewis Publishers, 1999:135=148.
[47]Chen Chunmei, Xie Zubin, Zhu Jianguo. Effects of elevated atmospheric CO2 concentration on soil carbon[J].Chinese Journal of Eco-Agriculture,2008, 16(1):217-222.[陈春梅,谢祖彬,朱建国.大气CO2浓度升高对土壤碳库的影响[J].中国生态农业学报,2008,16(1):217-222.]
[48]Cardon Z G, Hungate B A, Cambardella C A, et al. Contrasting effects of elevated CO2 on old and new soil carbon pools[J].Soil Biology & Biochemistry,2001, 33(3):365-373.
[49]Xie Z, Cadisch G, Edwards G, et al. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE)[J].Soil Biology & Biochemistry,2005, 37(7): 1 387-1 395.
[50]Hoosbeek M R, Vos J M, Bakker E J, et al. Effects of Free Atmospheric CO2 Enrichment (FACE),N fertilization and poplar genotype on the physical protection of carbon in the mineral soil of a polar plantation after five years[J].Biogeosciences,2006, 3:479-487.
[51]Schlesinger W I. An overview of the carbon cycle[C]Lai R. Soil and Global Change. Boca Raton, Florida: CRC Press, 1995:9-25.
[52]Yang Lifang, Li Guitong, Zhao Xiaorong,et al. Profile distribution of soil organic and inorganic carbon in chestnut soils of Inner Mongolia[J].Ecology and Environment,2007,16(1):158-162.[杨黎芳,李贵桐,赵小蓉,等.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J].生态环境,2007,16(1):158-162.]
[53]Schlesinger W H, Pilmanis A M. Plant-soil interactions in deserts[J].Biogeochemistry,1998,42: 169-187.
[54]Pan Genxing.Pedogenic carbonates in aridic soils of china and the significance in terrestrial carbon transfer[J].Journal of Nanjing Agricultural University,1999,22(1):51-57.[潘根兴.中国干旱地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J],南京农业大学学报,1999, 22(1): 51-57.]
[55]Pan Genxing, Cao Jianhua, Zhou Yunchao. Soil carbon and its significance in carbon cycling of earth surface system [J].Quaternary Sciences,2000, 20(4):325-334.[潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334.]
[56]Pan Genxing. Soil organic carbon stock, dynamics and climate change mitigation of China[J].Advances in Climate Change Research,2008, 4(5): 282-288.[潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展, 2008, 4(5): 282-288.]
[57]Pan Genxing. Study on carbon reservoir in soils of China[J].Bulletin of Science and Technology,1999,15(5):330-332.[潘根兴.中国土壤有机碳和无机碳库量研究[J].科学通报,1999,15(5):330-332.]
[58]Fan Hengwen, Jia Xiaohong, Zhang Jingguang, et al. Influence of soil degradation and desertification on soil carbon cycling in arid zones[J].Journal of Desert Research,2002,22(6):525-533.[樊恒文,贾晓红,张景光,等.干旱区土地退化与荒漠化对土壤碳循环的影响[J].中国沙漠, 2002,22(6):525-533.]
[59]Hu S X. The development of sierozem and environmental changes during Holocene in Lanzhou region[C]Gong Z T. Environment Change of Soil. Beijing: China Science & Technology Press, 1992.
[60]Lal R. Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304: 1 623-1 627.
[61]Scholes B. Will the terrestrial carbon sink saturate soon[J].IGBP Global Change New Letter: 1999,37:2-3.
[62]Trumbore S E. Constrains on belowground Carbon sequestration rates by tillage and crop rotation: A global data analysis[J].Soil Science Society of America Journal,2000, 66: 1 930-1 946.
[63]Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emission from soil in response to global warming[J].Science,2000, 290:291-296.
[64]Van Breemen N, Feijtel T C J. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic system[C]2Bouwman A F. Soil and Greenhouse Effect. Chichester: John Wiley and Sons, 1990:195-224.
[65]Yang Jianglong. The relationship between atmospheric CO2 and plant nitrogen nutrition[J].Soil and Environmental Sciences,2002, 11(2):163-166.[杨江龙.大气CO2与植物氮素营养的关系[J].土壤与环境,2002,11(2):163-166.]
[66]Pettersson R, McDonald A J S. Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2[J].Photosynthesis Research,1994, 39:389-400.
[67]Xu Zhenzhu, Zhou Guangsheng. Progress in studies on terrestrial plant to global change[J].Progress in Natural Science,2003, 13(2): 113-119.[许振柱,周广胜.陆生植物对全球变化的适应性研究进展[J].自然科学进展,2003,13(2):113-119.]
[68]Zenetti S, Hartwig U A, Kesel C V, et al. Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes?[J].Oecologia, 1997, 112: 17-25.
[69]Lüscher A,Hendrey G R,N-sberger J.Longterm responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland[J].Oecologia,1998, 113: 37-45.
[70]John H M, Thornley, Melvin G R C. Dynamics of mineral N availability in grassland ecosystems under increased[CO2]: Hypotheses evaluated using the Hurley Pasture Model[J].Plant and Soil, 2000, 224:153-170.
[71]Huang Zichen. Effects of aridity on water balance and N metabo-lism of sand-stabilizing plants[J].Acta Botanica,1979,21: 314-319.[黄子琛.干旱对固沙植物的水分平衡和氮素代谢的影响[J].植物学报,1979,21:314-319.]
[72]Roser M, Bert G D. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay[J].Plant and Soil,1999, 210:93-101.
[73]Gorissen, Cotrufo M E. Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply[J].Plant and Soil,2000, 224: 75-84.
[74]Torbert H A, Prior S A, Rogers H H, et al. Review of elevated atmospheric CO2 effects on agro-ecosystems:Residue decomposition processes and soil C storage[J].Plant and Soil,2000, 224: 59-73.
[75]Rogers G S, Milham P J, Thibaud M C. Interactions between rising CO2 concentration and nitrogen supply in cotton.I. Growth and leaf nitrogen concentration[J].Australian Journal of Plant Physiology,1996, 23:119-125.
[76]Hocking G P J, Meyer C P. Carbon dioxide enrichment decreases critical nitrate and nitrogen concentration in wheat[J].Journals of Plant Nutrition,1991,14: 571-584.
[77]Shen Yungang. The Most Important Chemical Reaction on Earth-Photosynthesis[M]. Beijing: Qinghua University Press,2000:32-93.[沈允钢.地球上最重要的化学反应—光合作用[M].北京:清华大学出版社, 2000:32-93.]
[78]Zerihun A, Gutschick V P, Bassirirad H. Compensatory roles of nitrogen uptake and photosynthesis N-use efficiency in determining plant growth response to elevated CO2: Evaluation using a functional balance model[J].Annals of Botany,2000, 86:723-730.
[79]Li Weimin, Zhou Lingyun. Physiolycial and ecological responses of wheat leaves to soil water and nitrogen (Ⅰ) Effects of soil water and nitrogen on wheat photosynthesis and water use efficiency[J].Chinese Journal of Soil Science,2004, 35(2):136-142.[李卫民,周凌云.水肥(氮)对小麦生理生态的影响(I)水肥(氮)条件对小麦光合蒸腾与水分利用的影响[J].土壤通报,2004,35(2):136-142.]
[80]Anten N P R, Werger M J A, Medina E. Nitrogen distribution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses[J].Plant Ecology,1998, 138:63-75.
[81]Jia Xiaohong, Li Xinrong, Li Yuanshou. Soil organic carbon and nitrogen dynamics during the re-vegetation process in the arid desert region[J].Journal of Plant Ecology, 2007, 31(1):66-74.[贾晓红,李新荣,李元寿.干旱沙区植被恢复中土壤碳氮变化规律[J].植物生态学报,2007, 31(1):66-74.]
[82]Wang Xingfen, Bai Kezhi, Kuang Tingyun. Responses of plant dark respiration to doubled CO2 concentration[J].Acta Botanica Sinica,1997,39(9):849-854.[汪杏芬,白克智,匡廷云.大气CO2浓度倍增对植物暗呼吸的影响[J].植物学报,1997, 39(9):849-854.]
[83]Jastrow J D, Miller R M, Owesby C E. Long-term effects of elevated atmospheric CO2 on below-ground biomass and transfor-mations to soil organic matter in grassland[J].Plant and Soil,2000, 224: 85-97.
[84]Roger M G,Damian J B, Jason L L. The effects of elevated[CO2] on the C/N and C/P mass ratios of plant tissues[J].Plant and Soil,2000, 224:1-14.
[85]Biehler F, Biehler K, Fock H. Evidence for the contribution of the Mehlerperoxidase reaction in dissipating excess electrons in drought stressed wheat[J].Plant Physiology,1996, 112:265-272.
[86]Hatch M D. C4photosynthesis: An unlikely process full of surprises[J].Plant & Cell Physiology, 1992,33:333-342.
[87]Gillon J, Yakir D. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2[J].Science,2001, 291:2 584-2 587.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[3] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[4] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[5] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[6] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[7] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[8] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[9] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[10] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[11] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[12] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[13] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[14] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[15] 潘根兴, 陆海飞, 李恋卿, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 郑金伟. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
阅读次数
全文


摘要