地球科学进展 ›› 2010, Vol. 25 ›› Issue (7): 691 -697. doi: 10.11867/j.issn.1001-8166.2010.07.0691

综述与评述 上一篇    下一篇

火星快车OMEGA高光谱探测矿物组成的新进展
祝民强,周万蓬,胡全一   
  1. 东华理工大学江西省数字国土重点实验室,核资源与环境教育部重点实验室,江西 抚州 344000
  • 收稿日期:2009-09-17 修回日期:2010-03-19 出版日期:2010-07-10
  • 通讯作者: 祝民强 E-mail:mqzhu@ecit.edu.cn
  • 基金资助:

    国家自然科学基金项目“火星快车OMEGA高光谱相对反射率的反演方法与矿物识别研究”(编号:40772200);国家留学基金项目“火星快车OMEGA高光谱遥感矿物岩石制图研究”(编号:2004307S03)资助.

Progresses in OMEGA/Mars Express Detecting Minerals on Mars

Zhu Minqiang, Zhou Wanpeng, Hu Quanyi   

  1. Digital Land Key Laboratory of Jiangxi Province, East China Institute of Technology, Fuzhou 344000, China
  • Received:2009-09-17 Revised:2010-03-19 Online:2010-07-10 Published:2010-07-10
  • Contact: Zhu Minqiang E-mail:mqzhu@ecit.edu.cn

主要介绍“火星快车(Mars Express)”搭载的“可见光及红外矿物制图光谱仪(OMEGA)”及其采集数据的特点、大气校正方法和矿物识别研究的新进展。“经验传输函数法”(ETF)是目前OMEGA数据大气校正普遍采用的方法。OMEGA数据已经成功揭示了火星表面矿物和组成的多样性和复杂性。OMEGA检测到与水蚀变相关的层状硅酸盐矿物绿脱石、绿泥石和蒙脱石等主要分布于古老的诺亚期的露头上,这些层状硅酸盐矿物可能是火成岩矿物长期持续与液态水系统作用的结果。含水硫酸盐类矿物石膏、水镁矾和多水硫酸盐等水合化学沉积矿物在亮色调层状地层区的发现,表明火星表面有大量与水作用相关的蒸发盐的存在。火星表面缓慢风化形成的无水铁氧化物主要分布于北半球铁镁质含量低的低地(lowland)地区。OMEGA可以识别辉石和橄榄石,能够区分高钙辉石和低钙辉石。高钙辉石主要分布于Hesperian期的低反照率的火山岩分布地区、黑色沙丘和撞击坑喷射物分布区;低钙辉石主要分布于老的诺亚期的亮色调露头分布区。OMEGA在反照率变化大的极地冰盖地区可以识别水冰和CO2冰。水冰主要利用1.08μm、1.25μm、1.51μm和2.0μm特征吸收波段来识别。水冰各吸收特征波段的吸收强度与水冰的粒度呈正相关。CO2冰主要利用1.43μm、2.0μm和2.6μm特征吸收波段来识别。

The paper mainly introduces the features of OMEGA/Mars Express instrument and acquired data, the atmospheric correction methods, and  recent progresses of mineral detection. Empirical Transmission Functions (ETF) is the relative effective atmospheric correction method up to now. The OMEGA data have successfully revealed the diversity and complex of Mars surface minerals and composition. The hydrated phyllosilicates, a family of aqueous alteration products, such as nontronite, chlorite and montmorillonite, are detected by OMEGA. These minerals are mainly associated with Noachian outcrops, which are consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. The hydrated sulfates, such as gypsum, kieserite and polyhydrated sulfates, are identified on light-toned layered terrains. The existence of these minerals means that there have evaporates deposits on Mars which are related to water processes. Anhydrous ferric oxides formed in a slow superficial weathering are distributed in lowland over the northern hemisphere, without liquid water playing a major role across the planet. OMEGA can identify pyroxene and olivine. It discriminates between the high-calcium pyroxenes and low-calcium pyroxenes. The high-calcium pyroxenes dominate in low-albedo volcanic regions of Hesperian age, dark sand and crater ejecta. The low-calcium pyroxenes occur as moderate to bright outcrops in older, Noachian terrains. OMEGA can also discriminate the H2O ice and CO2 ice in varied high-albedo polar icecap area. The H2O ice absorption features are major in the 1.08 m, 1.25 m, 1.51 m and 2.0m. The H2O ice absorption depth  increases with the ice grain size. The CO2 ice can be identified by 1.43  m, 2.0  m and 2.6m absorption features.

中图分类号: 

[1] NASA. The Mars Exploration Program′s Science Theme[EB/OL]. http://mars.jpl.nasa.gov/science/, 2006.
[2] Bibring J P, Combes M, Langevin Y, et al. Results from the ISM experiment[J].Nature,1989, 341: 591-593
[3] Christensen P R, Bandfield J L, Hamilton V E,et al. Mars global surveyor thermal emission spectrometer experiment[J].Journal of Geophysical Research,2001, 106 (E10): 23 823-23 871.
[4] Bibring J P, Langevin Y, Gendrin A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J].Science,2005, 307: 1 576-1 630.
[5] NASA. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)[EB/OL].http://crism. jhuapl.edu/instrument/innoDesign.php, 2007.
[6] Mustard J F, Poulet F, Gendrin A, et al. Olivine and pyroxene diversity in the crust of mars[J].Science,2005, 307: 1 594-1 597.
[7] Combe J P, Sotin C, Mouélis S Le,et al. Methodology of hyperspectral reflectance data analysis for mineralogical mapping of planetary surface: Application to OMEGA/Mars Express images[C]//36th Lunar and Planetary Science Conference, 2005.
[8] Guan H, Xie H, Zhu M. Development of an alternative Martain atmospheric correction algorithm for OMEGA/Mars Express imagery[C]//Proceeding of 37th Lunar and Planetary Science Conference. Huston, 2006.
[9] Gendrin A, Mangold N, Arvidson R,et al. Sulfates in martian layered terrains: The OMEGA/Mars express view[J].Science,2005, 307: 1 587-1 591.
[10] Langevin Y, Poulet F, Bibring J P, et al. Sulfates in the north Polar region of mars detected by OMEGA/Mars express[J].Science,2005, 307: 1 584-1 586.
[11] Poulet F, Bibring J P, Mustard J F, et al. Phyllosilicates on Mars and implications for early martian climate[J].Nature,2005, 438: 632-627.
[12] Bibring J P, Loizeau D, Pelkey S M, et al. Coupled OMEGA-CRISM observations of marwth vallis[C]//Proceedings of 38th Lunar and Planetary Science Conference. Huston, 2007.
[13] Bibring J P, Langevin Y, Mustard J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data[J].Science,2006, 312: 400-404.
[14] Hale A S, Bass D S, Tamppari L K. Monitoring the perennial martian northern polar cap with MGS MOC[J].ICARUS,2005, 174: 502-512.
[15] Langevin Y, Poulet F, Bibring J P, et al. Summer evolution of the north polar cap of mars as observed by OMEGA/ Mars Express[J].Science,2005, 307: 1 581-1 584.
[16] Langevin Y, Doute S, Vincendon M, et al. No signature of clear CO2 ice from the cryptic′ regions in Mars′ south seasonal polar cap[J].Nature,2006,442: 790-792.
[17] Souza J P, Squyres S, Arvidson R, et al. Mars Mineralogy: Preliminary Results from Mars exploration Rovers Spirit and Opportunity[C]//Pecchio, Andrade, D′Agostino, et al, eds. Applied Mineralogy. São Paulo: ICAM BR, 2004.
[18] Bell J F, Squyres S, Arvidson R E, et al. Pancam multispectral imaging results from the opportunity rover at meridiani Planum[J].Science,2004, 306: 1 703-1 709.
[19] Christensen P R, Wyatt M B, Glotch T D, et al. Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover[J].Science,2004, 306: 1 733-1 739.
[20] Squyres S, Arvidson R E, Bell J F, et al. The opportunity rover′s athena science investigation at Meridiani Planum, Mars[J].Science,2004, 306: 1 698-1 703.
[21] Hynek B M, Arvidson R E, Phillips R J, et al. Geologic setting and origin of Terra Meridiani hematite deposit on Mars[J].Journal of Geophysical Research,2002, 107(E10):18-1-18-14.
[22] Zhu M, Guan H, Xie H. Mineral and Lithologic Mapping of Martian Low Albedo Regions Using OMEGA Data[C]//Proceedings of 37th Lunar and Planetary Science Conference. Huston, 2006.
[23] Arvidson R E, Seelos F P, Deal K,et al. Mantled and exhumed terrains in Terra Meridiani, Mars[J].Journal of Geophysical Research,2003, 108 (E12): 14-1-14-20.

[1] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[2] 檀赛春;石广玉. 海洋初级生产力的卫星遥感[J]. 地球科学进展, 2005, 20(8): 863-870.
阅读次数
全文


摘要