地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 133 -139. doi: 10.11867/j.issn.1001-8166.2010.02.0133

综述与评述 上一篇    下一篇

大气廓线物理反演的最优化方法进展
蒋德明 1;董超华 2   
  1. 1.湖南省气象科学研究所,长沙  410015; 2.国家卫星气象中心,北京  100081
  • 收稿日期:2009-04-10 修回日期:2009-11-30 出版日期:2010-02-10
  • 通讯作者: 蒋德明 E-mail:dmjiang@nsmc.cma.gov.cn
  • 基金资助:

     国家自然科学基金面上项目“红外高光谱大气参数反演研究”(编号:40475016);国家高技术研究发展计划项目“高光谱大气红外探测器辐射率资料的直接同化技术研究”(编号:2007AA12Z140)资助

A Review of Optimal Algorithm for Physical Retrieval of Atmospheric Profiles

Jiang Deming 1, Dong Chaohua 2   

  1. 1. Hunan Research Institute of Meteorological Science, Changsha  410015, China;2.National Satellite Meteorological Center,CMA, Beijing  100081, China
  • Received:2009-04-10 Revised:2009-11-30 Online:2010-02-10 Published:2010-02-10
  • Contact: JIANG De-Ming E-mail:dmjiang@nsmc.cma.gov.cn

从最优化数学理论角度对大气廓线物理反演以及卫星辐射率资料直接同化中的最优化算法进行了回顾。分析了各种方法的优点和缺点、联系和差别。总结了卫星大气遥感反演问题的求解思路。对大气廓线反演研究中几种主要的目标函数和寻优策略进行了分析,着重分析了目前作为各数值预报中心和卫星数据处理中心业务数值产品核心算法的牛顿非线性迭代法的不足之处,并对其改进途径进行了探讨。引入了LevenbergMarquardt方法及信赖域方法用于大气廓线反演,使反演算法的收敛性质得到改善。

Methods for physical retrieval of atmospheric profiles and direct assimilation of satellite radiances are reviewed on optimization theory basis. Advantages and disadvantages, differences and relationships between various methods are discussed. General strategies for optimal inversion of atmospheric profiles from satellite data are introduced. A few important special objective functions and search algorithms currently used in the atmospheric iteration inversion techniques are analyzed and compared. Typically, the Newton′ non-linear iteration method which is currently adopted as the core algorithm in the numerical weather analysis/forecast centers and in satellite data centers for their operational numerical products is discussed. Levenberg-Marquardt method and trust region method are proposed for atmospheric profiles retrieval which is capable of helping the improvement of the convergence properties of the inversion algorithm.

中图分类号: 

[1] Chahine M. Inverse problems in radiative transfer: Determination of atmospheric parameters[J].Journal of Atmospheric Science,1970,27: 960-967.
[2] Smith W L. Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere[J].Applied Optics,1970, 9: 1 993-1 999.
[3] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J].Reviews of Geophysics and Space Physics,1976,14(4): 609-624.
[4] Smith W L, Woolf H M, Revercomb H E. Linear simultaneous solution for temperature and absorbing constituent profiles from radiance spectra[J].Applied Optics,1991,30(9): 1 117-1 123.
[5] Yuan Yaxiang,Sun Wenyu.Optimization Theory and Methods[M].Beijing:Science Press,1997:521-558.[袁亚湘,孙文瑜,最优化理论与方法[M].北京:科学出版社,1997:521-558.]
[6] Li Jun, Huang Sixun. Application of improved discrepancy principle in inversion of atmosphere infrared remote sensing[J].Science in China (Series D),2001,31(1):70-80.[李俊,黄思训. 改进的偏差原则在大气红外遥感及反演中的应用[J].中国科学:D辑,2001,31(1):70-80.]
[7] Zhu Guofu,Xue Jishan,Zhang Hua,et al.Direct assimilation of satellite radiance data in the GRAPES variational analysis system[J].Chinese Science Bulletin,2008,53(20):2 424-2 427.[朱国富,薛纪善,张华,等.GRAPES 变分同化系统中卫星辐射率资料的直接同化\[J].科学通报,2008,53(20):2 424 -2 427.]
[8] Lorenc A C. Analysis methods for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,1986, 112: 1 177-1 194.
[9] Lorenc A C. Optimal nonlinear objective analysis[J].Quarterly Journal of the Royal Meteorological Society,1988,114: 205-240.
[10] Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS[J].Quarterly Journal of the Royal Meteorological Society,1989,115(489): 1 001-1 026.
[11] Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application to TOVS data[J].Quarterly Journal of the Royal Meteorological Society,1989,115(489): 1027-1 037.
[12] Chahine M T, Aumann H, Goldberg M,et al.AIRS-Team retrieval for core products and geophysical parameters. AIRS Algorithm Theoretical Basis Doc., Version 2.2[DB/OL]. JPL D-17006,http://eospso.gsfc.nasa.gov/ eos_homepage/ for_scientists/ atbd/ docs/ AIRS/ atbd-airs-L2.pdf.2002.
[13] Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice Series on Atmospheric, Oceanic and Planetary Physics, Vol.II[M]. World Scientific Publishing Company,2000.
[14] Li J. Temperature and water vapor weighting functions from radiative transfer fquation with surface emissivity and solar reflectivity[J].Advances in Atmospheric Sciences,1994,11(4): 421-426.
[15] Li Jun, Zeng Qingcun. Study of infrared remote sensing of the cloudy atmosphere and the inversion problem, Part I: Theoretical Study[J].Chinese Journal of Atmospheric Sciences,1997,21(1): 1-9.[李俊,曾庆存. 晴空时大气红外遥感及其反演问题I.理论研究[J]. 大气科学,1997,21(1): 1-9.] 
[16] Aumann H H, Chahine M T, Gautier C M D,et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41: 253-264.
[17] Buhler Y, Mason G, Perez J, et al. The EUMETSAT Polar System: Mission, System and Programmatics[C]//52nd International Astronautical Congress.Toulouse, France,2001.
[18] Goldberg M D, Qu Y, McMillin L M,et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41: 379-389.
[19] Dong Chaohua,Jiang Deming,Qi Chengli,et al. Experimental study on atmospheric parameters using new atmospheric sounding instrument data[J].Proceedings of the SPIE,2005,5 655(24):24-32.
[20] Jiang Deming, Dong Chaohua, Lu Weisong. Preliminary study on the capacity of high spectral resolution infrared atmospheric sounding instrument using AIRS measurements[J].Chinese Journal of Remote Sensing,2006, 10(4): 586592.[蒋德明,董超华,陆维松.利用AIRS观测资料进行红外高光谱大气探测能力试验研究[J].遥感学报, 2006,10(4): 586-592.]
[21] Ma X L, Schmit T J, Smith W L. A nonlinear physical retrieval algorithm, its application to the GOES-8/9 sounder[J].Journal of Applied Meteorology,1999,38:501-513.
[22] Zhang Peichang, Wang Zhenhui. Principles of Remote Sensing of atmospheric Parameters in Microwave[M].Beijing:China Meteorological Press,1995:351-352.[张培昌,王振会.大气微波遥感基础[M].北京: 气象出版社,1995:351-352.]
[23] Westwater E R, Strand O N. Statistical information content of radiation measu+rements used in indirect sensing[J].Journal of Atmospheric Science,1968, 25: 750-758.
[24] Reuter D, Susskind J, Pursch A. First-guess dependence of a physically based set of temperature humidity retrievals from HIRS2/MSU data[J].Journal of Atmospheric and Oceanic Technology,1988, 5:70-83.
[25] Lunacek M, Darrell Whitley L, Philip Gabriel, et al. Comparing search algorithms for the temperature inversion problem[C]//Proceedings of Genetic and Evolutionary Computation Conference. Seattle,WA, USA, Springer Berlin / Heidelberg Press, Vol.3102/2004: 1 340-1 351.
[26] Li J, Liu C Y, Huang H L, et al. Optimal cloud-clearing for AIRS radiances using MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,2005, 43:1 266-1 278.
[27] Susskind J, Christopher D B,Blaisdell J, et al. Retrieval of Atmospheric and Surface Parameters From AIRS/AMSU/HSB Data in the Presence of Clouds[J].IEEE Transactions On Geoscience and Remote Sensing,2003, 41(2): 390-409.
[28] Chahine M T.Remote sounding of cloudy atmospheres. II. Multiple cloud formations[J].Journal of Atmospheric Science,1977, 34: 744-757.
[29] Chahine M T. Remote Sounding of cloudy atmospheres. I. The single cloud layer[J].Journal of Atmospheric Science,1974, 31: 233-243.
[30] Liu Q, Weng F. Advanced doubling adding method for radiative transfer in planetary atmospheres[J].Journal of Atmospheric Science,2006,63: 3 459-3 465.
[31] Koyama T, Vukicevic T, Sengupta M, et al. Analysis of information content of infrared sounding radiances in cloudy conditions[J]. Monthly Weather Review,2006,134:3 657-3 667.
[32] Vukicevic T, Sengupta M, Jones A S, et al. Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation[J].Journal of Atmospheric Science,2006, 63: 901-919.
[33] Marshall J L,Jung J, Zapotocny T, et al. The application of AIRS radiances in numerical weather prediction[J]. Australian Meteorological Magazine,2006,55:213217.
[34] Jiang Deming. Approach to High Spectral Resolution Infrared Remote Sensing of Atmospheric Temperature and Humidity Profiles[D].Nanjing: Nanjing University of Information Science & Technology,2007:126-162.[蒋德明. 高光谱分辨率红外遥感大气温湿度廓线反演方法研究\[D\].南京:南京信息工程大学,2007:126-162.]
[35] Errico R M, Ohring G, Bauer P,et al. Assimilation of satellite cloud and precipitation observations in numerical weather prediction models: Introduction to the JAS special collection[J]. Journal of Atmospheric Science,2007a, 64: 3 737-3 741.
[36] Pavelin E, English S. Plans for Assimilation of Cloud-affected Infrared Soundings at the Met Office[D]. Proceedings of ITSC-XV, Maratea, Italy, 4th-10th October, 2006.
[37] Errico R M, Bauer P, Mahfouf J F. Issues regarding the assimilation of cloud and precipitation data[J].Journal of Atmospheric Science,2007b,64: 3 785-3 798.
[38] Lopez P. Cloud and precipitation parameterizations in modeling and variational data assimilation: A review[J]. Journal of Atmospheric Science,2007,64:3 766-3 784.
[39] Pavelin E G, English S J, Eyre J R. The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,2008,134(632):737-749.
[40] Marshall J L, Jung J, Goldberg M, et al. Using cloudy AIRS fields of view in numerical weather prediction[J]. Australian Meteorological Magazine,2008,57(3):249-254.
[41] Dong C, Yang J, Zhang W,et al.An overview of a new chinese weather satellite FY-3A[J].Bulletin of the American Meteorological Society,2009, 90: 1 531-1 544.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[9] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[10] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[11] 孙小荣,张书毕,吴继忠,郑南山. 基于 SNRGPS-IR技术机理分析[J]. 地球科学进展, 2019, 34(2): 156-163.
[12] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[13] 郭恺. 基于局部层析的 TTI各向异性参数初始建模方法研究[J]. 地球科学进展, 2019, 34(10): 1060-1068.
[14] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[15] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
阅读次数
全文


摘要