地球科学进展 ›› 2009, Vol. 24 ›› Issue (9): 1015 -1023. doi: 10.11867/j.issn.1001-8166.2009.09.1015

研究论文 上一篇    下一篇

海底热液活动区地微生物学研究中的分子生物学技术
李江涛,周怀阳,彭晓彤,吴自军   
  1. 同济大学海洋地质国家重点实验室  上海  200092
  • 收稿日期:2009-01-15 修回日期:2009-07-25 出版日期:2009-09-10
  • 通讯作者: 李江涛 E-mail:ljtao98@126.com
  • 基金资助:

    国家自然科学基金项目“胡安·德富卡洋脊Endeavour段热液生态环境变化与地球化学制约机理研究”(编号:40532011)资助.

Molecular Biological Techniques in Geomicrobiology of Seafloor Hydrothermal Vents

LI Jiangtao,Zhou Huaiyang,Peng Xiaotong,Wu Zijun   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2009-01-15 Revised:2009-07-25 Online:2009-09-10 Published:2009-09-10

     海底热液活动区微生物生态及其相关研究一直是近年来海洋地微生物学研究的热点之一。有关发现不断挑战着人们对微生物的代谢机理、生存极限、元素地球化学循环作用等方面的传统认识。与传统的富集培养方法相比,主要基于16S rRNA基因和特征性功能基因系统的发育分析等技术为研究这一极端环境中栖息的微生物群落提供了更为系统和全面的手段。这些技术包括基因文库构建(16S rRNA和其它功能基因)、变性梯度凝胶电泳(DGGE)、末端限制性片段长度多态性分析(T-RFLP)、荧光原位杂交(FISH)以及定量PCR等。目前,上述技术手段广泛应用于全球海底热液活动区地微生物学的研究,在丰富地球物种多样性、调查微生物参与的元素地球化学循环过程、研究微生物与矿物的相互作用以及生命起源与演化等方面取得了大量的研究成果。简要介绍了常规分子生物学技术的基本原理及其在海底热液活动区地微生物学研究中的应用现状。
     

      Recently, microbial ecology and related phenomena of seafloor hydrothermal vents have been the focus of geomicrobiology. Discoveries from these extreme environments continue to challenge accepted notions about microbial metabolism, limits of life and elemental geochemical cycles. Compared with traditional cultivation, phylogenetic analyses based on the small subunit rRNA (16S rRNA) and certain diagnostic metabolic genes have provided systematic and comprehensive methods to study microbial communities inhabited in hydrothermal chimneys. Cultivation-independent molecular techniques include construction of gene library, DGGE, T-RFLP, FISH and quantitative PCR. At present, these approaches have been successfully applied into the studies of geomicrobiology in global seafloor hydrothermal vents. Moreover, lots of achievements have also been accomplished in the investigations of microbial diversity, processes of key element geochemical cycles involved with microbes, the interactions between microbes and minerals, the origin of life and their evolution. In this review, we briefly outline the principles of various methods and their applications in research of microbial ecology of hydrothermal vents.

中图分类号: 

[1] Corlis J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift[J].Science,1979, 203: 1 073-1 083.
[2] Jannasch H W, Mottl M J. Geomicrobiology of deep-sea hydrothermal vents[J].Science,1985, 229: 717-725.
[3] Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: Microbe mineral interactions at and below the seafloor[J].TRENDS in Microbiology,2005, 13: 449-456.
[4] Kelley D S, Baross J A , Delaney J R. Volcanoes, fluids, and life at midocean ridge spreading centers[J].Annual Review of Earth and Planetary Sciences, 2001, 30: 385-491.
[5] Deming J W, Baross J A. Deep-sea smoker: Windows to a subsurface biosphere?[J].Geochimica et Cosmochimica Acta,1997, 57: 3 219-3 230.
[6] Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies[J].Geochimica et Cosmochimica Acta,2003, 67:2 843-2 856.
[7] Cowen J P. The microbial biosphere of sediment buried oceanic basement[J].Research of Microbiology,2004, 155: 497-506.
[8] Blöchl E, Rachel R, Burggraf S, et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113℃[J].Extremophiles, 1997, 1: 14-21.
[9] Kashefi K, Lovely D R. Extending the upper temperature limit for life[J].Science, 2003, 301: 934.
[10] Inagaki F,Takai K,Nealson K H,et al.Sulfurovum lithotrophicum gen. nov.,sp.nov.,a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa Trough hydrothermal sediments[J].International Journal of Systematic and Evolutionary Microbiology,2004,54:1 477-1 482.
[11] Corre E, Reysenbach A-L, Prieur D. ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge[J].FEMS Microbiology Letters, 2001, 205: 329-335.
[12] Hoek J, Banta A, Hubler F,et al. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the Central Indian Ridge[J].Geobiology,2003,1:119-127.
[13] López-Garcia P, Duperron S, Philippot P, et al. Bacterial diversity in hydrothermal sediment and epsilon-proteobacterial dominance in experimental micro-colonizers at the Mid-Atlantic Ridge[J].Environmental Microbiology,2003, 5: 961-976.
[14] Kormas K A, Tivey M K, Damm K V, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site[J].Environmental Microbiology, 2006, 8: 909-920.
[15] Ehrhardt C J,Haymon R M,Lamontagne M G,et al.Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise[J].Environmental Microbiology,2007,9:900-912.
[16] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation[J].Microbiology Reviews,1995, 59:143-169.
[17] Cary S C,Campbell B J,DeLong E F.Studying the deep subsurface biosphere: Emerging technologies and applications[C]//Wilcock W S D,DeLong E F,Kelley D S, et al,eds.The subseafloor biosphere at Mid-Ocean Ridges,Geophysical Monograph 144,American Geophysical Union.Washington DC,2004:383-399.
[18] Takai K, Nakagwa S, Reysenbach A-L, et al. Microbial ecology of mid-ocean ridges and back-arc basin[C]//Back-arc spreading systems: Geological biological, chemical, and physical interactions, Geophysical Monograph 166, American Geophysical Union. Washington DC,2004:185-213.
[19] Zhou J, Bruns M, Tiedje J. DNA recovery from soils of diverse composition[J].Applied and Environmental Microbiology,1996, 62: 316-322.
[20] Edwards K J, Bond P L, Gihring T M,et al. An archaea iron-oxidizing extreme acidophile important in acid mine drainage[J]. Science,2000,287:1 796-1 799.
[21] Page A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology,2008, 10:874-884.
[22] Tivey M K.Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007,20:50-65.[23] Woese C R, Fox G E. Phylogenetic structure of the Prokaryotic domain: the primary kingdom[J].Proceedings of the National Academy of Sciences,1977,74:5 088-5 090.
[24] Bult C J, White O, Olsen G J, et al. Complete genome sequence of the Methanogenic Archaea,Methanococcus Jannasehii[J].Science,1996, 273: 1058-1073.
[25] Corliss J B, Baross J A, Hoffman S E. A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J].Oceanologica Acta,1981,4:59-69.
[26] Nakagawa T, Nakagawa S, Inagaki F, et al. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures[J].FEMS Microbiology Letters,2004, 232: 145-152.
[27] Dhillon A, Lever M, Lloyd K G, et al. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin[J].Applied and Environmental Microbiology, 2005, 71: 4 592-4 601.
[28] Brazelton W, Schrenk M, Kelley D, et al. Methane-and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J].Applied and Environmental Microbiology, 2006, 72: 6 257-6 270.
[29] Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J].Applied and Environmental Microbiology,2003, 69:3 580-3 592.
[30] Perner M, Kuever J, Seifert R, et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge[J].FEMS Microbiology Ecology,2007, 61: 97-109.
[31] Takai K, Campbell B J, Cary S C, et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilon-proteobacteria[J].Applied and Environmental Microbiology,2005, 71: 7 310-7 320.
[32] Fischer S G, Lerman L S. DNA fragments differing by single base pair substitutions are separated in Denaturing Gradient Gels: Correspondence with melting theory[J].Proceedings of the National Academy of Sciences,1983, 80: 1 579-1 583.
[33] Muyzer G, Teske A, Wirsen C O, et al. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments[J].Archives of Microbiology, 1995, 164: 165-172.
[34] Yu Z T, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by denaturing gradient gel electrophores[J].Applied and Environmental Microbiology,2004, 70: 4 800-4 806.
[35] Sievert S, Brinkhoff T, Muyzer G,et al.Spatial Heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece)[J].Applied and Environmental Microbiology,1999,65: 3 834-3 842.[36] Nakagawa T, Ishibashi J I, Maruyama A, et al. Analysis of Dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific[J].Applied and Environmental Microbiology, 2004, 70: 393-403.
[37] Takai K, Komatus T, Inagaki F, et al. Distribution of archaea in a black smoker chimney structure[J].Applied and Environmental Microbiology,2001, 67:3 618-3 629.
[38] Taroncher-Oldenburg G, Francis C A, Ward B B. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment[J].Applied and Environmental Microbiology, 2003, 69:1 159-1 171.
[39] Wang F P, Zhou H Y, Meng J, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent[J].Proceedings of the National Academy of Sciences,2009(in print).
[40] Pernthaler J, Glockner F O, Schonhuber W, et al. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes[C]//Paul J H, ed. Methods in Microbiology: Marine Microbiology. New York:Academic Press, 2001:207-226.
[41] DeLong E F, Wickham G S, Pace N R. Phylogenetic stains: Ribosomal RNA based probes for the identification of single microbial cells[J].Science,1989, 243: 5 554-5 563.
[42] Orphan V, House C, Hinrichs K, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001, 293: 484-487.
[43] Takai K, Oida H, Suzuki Y, et al. Spatial distribution of marine crenarchaeota group I in the vicinity of Deep-Sea hydrothermal Systems[J].Applied and Environmental Microbiology,2004, 70: 2 404-2 413.
[44] Taylor C D, Wirsen C O, Crail F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents[J].Applied and Environmental Microbiology,1999, 65: 2 253-2 255.
[45] Peng X T, Zhou H Y, Yao H Q, et al. Microbe-related precipitation of iron and silica in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge[J].Chinese Science Bulletin,2007, 52: 3 233-3 238.

[1] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[2] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
[3] 曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展, 2003, 18(5): 764-772.
阅读次数
全文


摘要