地球科学进展 ›› 2009, Vol. 24 ›› Issue (7): 817 -824. doi: 10.11867/j.issn.1001-8166.2009.07.0817

地面观测资料分析 上一篇    下一篇

黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析
冉有华,李新,王维真,晋锐   
  1. 中国科学院寒区旱区环境与工程研究所,甘肃  兰州  730000
  • 收稿日期:2009-02-10 修回日期:2009-04-30 出版日期:2009-06-10
  • 通讯作者: 冉有华 E-mail:ranyh@lzb.ac.cn
  • 基金资助:

    中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”( 编号:KZCX2-XB2-09);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714400)资助.

Grid Scale Temporal Stability of Multilayer Soil Moisture in a Grassland Ecosystem in Western China

Ran Youhua, Li Xin, Wang Weizhen, Jin Rui   

  1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou  730000,China
  • Received:2009-02-10 Revised:2009-04-30 Online:2009-06-10 Published:2009-07-10

定量分析半干旱环境下盐碱化草地类型土壤水分的时间稳定性,是开展土壤水分尺度时空转换的前提,同时也是水文研究的重要组成部分。基于“黑河遥感—地面同步试验”干旱水文试验区临泽草地加密观测区16个土壤水分剖面的逐日持续观测数据,利用平均相对偏差及相关系数方法,对网格尺度上多层土壤水分的时间稳定性进行了分析。初步表明:①在土壤水分监测点布设上,在相对长的时期内,能代表网络水平上平均土壤水分最优观测的点是存在的,最优观测点位置的选择需要先密后稀,并根据事先的加密观测结果进行稳定性分析,保留平均相对偏差接近于0且其标准差最小的点开展长期观测。②在90 m×90 m的网格尺度上,土壤水分的空间结构在40 cm深度以上各层的时间稳定性是类似的,但稳定程度不同,表层最不稳定。在40 cm以下基本上趋于稳定,空间异质性降低。③研究区所在环境下网格尺度土壤水分空间分布在时间上强烈相关,观测刚开始的几天与其它时期的相关性比较低,在平稳期相关性较好,不稳定性主要由降水或灌溉事件引起。同时,由于环境的复杂性及观测的误差,这种特殊类型土壤水分的时间稳定特征还需要进一步研究。

The quantitative study of soil moisture time stability in a semi-arid, grassland types and stalinizaton environmen is an important part of the soil moisture scaling and hydrological studies. This paper analyzed the time stability of multi-layer soil moisture in grid scale based on the 16 soil moisture profile observation in Linze grassland intensive observation period (IOP) area during “Watershed Airborne Telemetry Experimental Research (WATER)” experimental period using the mean relative difference plot and correlation coefficient method. Results show: (1) Soil moisture monitoring points  exist, which can represent the grid average value for a relatively long period. The optimal choice of the location of observation points is a thinning process in accordance with prior observations of intensive observation and stability analysis result. (2) In the 90 m×90 m grid scale, the spatial structure of soil moisture in the depth of upper 40 cm layer is similar, but the degree of stability is different, the surface layer is most unstable. The stability of below 40 cm layer is stabilizing.(3) The spatial pattern is strongly related during WATER period, just started a few days with other days having a low correlation. It has a high positive correlation in the stable phase and high negative correlation in precipitation and irrigation event. Therefore, the instability is mainly caused by rainfall and irrigation. At the same time, due to the complexity of the environment and the observation error, the soil moisture and stability characteristics in the experimental area need further study.

中图分类号: 

[1] Cosh M H, Stedinger J, Brutsaert W. Variability of surface soil moisture at the watershed scale[J].Water Resources Research,2004b, 40(W12513), doi:10.1029/2004WR003487.
[2] Wendroth O, Pohl W, Koszinski S, et al. Spatio-temporal patterns and covariance structures of soil water status in two northeast German field sites[J].Journal of Hydrology,1999, 215 (1/4): 38-58.
[3] Qiu Y, Fu B J, Wang J, et al. Spatio-temporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau China[J].Catena,2003, 54: 173-195.
[4] Xin Xiuli, Zhang Jiabao, Zhu Anning. Temporal stability of spatial distribution pattern of soil water tension at different scales[J].Transactions of the CSAE,2008, 24(5): 15-19.[信秀丽,张佳宝,朱安宁.土壤水吸力空间分布规律的时间稳定性研究[J].农业工程学报, 2008, 24(5):15-19.]
[5] Vachaud G, Silans A P D, Balabanis P, et al. Temporal stability of spatially measured soil water probability density function[J].Soil Science Society of America,1985,49:822-828.
[6] Kachanoski R G,de Jong E. Scale dependence and the temporal persistence of spatial patterns of soil waters storage[J].Water Resources Research,1988,24:85-91.
[7] Jost G, Heuvelink G B M, Papritz A. Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging[J].Geoderma, 2005,128(3/4): 258-273.
[8] Cosh M H, Jackson T J, Moran S, et al.Temporal persistence and stability of surface soil moisture in a semi-arid watershed[J].Remote Sensing of Environment,2008,112(2):304-313.
[9] Martinez-Fernandez J, Ceballos A. Temporal stability of soil moisture in a large-field experiment in Spain[J].Soil Science Society of America Journal,2003, 67:1 647-1 656.
[10] Grant Laura,Seyfried Mark, McNamara Jim. Spatial variation and temporal stability of soil water in a snow-dominated, mountain catchment[J].Hydrological Processes,2004,18(18):3 493-3 511.
[11] Zhu Shoujun, Ding Yanfang, Xue Taiqian. Study on spatial variability and temporal stability of soil moisture in agri-forestry[J].Research of Soil and Water Conservation,2000,7(1):46-48.[朱首军,丁艳芳,薛泰谦.农林复合生态系统土壤水分空间变异性和时间稳定性研究[J].水土保持研究,2000,7(1):46-48.]
[12] Zhou Qiyou, Jun Shimada. Temporal stability of the spatial distribution pattern of soil water[J].Acta Pedologica Sinica,2003,40(5):673-690.[周启友,岛田纯.土壤水空间分布结构的时间稳定性[J].土壤学报,2003,40(5):673-690.]
[13] Li Xin, Ma Mingguo, Wang Jian,et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin: Scientific objectives and experiment design[J].Advances in Earth Science, 2008, 23(9): 897-914.[李新,马明国,王建,等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[14] Cosh M H, Jackson T J, Bindlish R, et al. Watershed scale temporal persistence of soil moisture and its role in validating satellite estimates[J].Remote Sensing of Environment,2004, 92(4):427-435.
[15] Chen D, Engman E T, Brutsaert W. Spatial distribution and pattern persistence of surface soil moisture and temperature over prairie from remote sensing[J].Remote Sensing of Environment,1997, 61: 347-360.
[16] Cosh M H, Jackson T J, Starks P, et al. Temporal stability of surface soil moisture in the Little Washita river watershed and its applications in satellite soil moisture product validation[J].Journal of Hydrology,2006, 323(1/4):168-177.

[1] 宋平, 刘元波, 刘燕春. 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 731-740.
[2] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[3] 丛丕福,曲丽梅,韩庚辰,杨新梅,王臣立. 辽东湾海水透明度的遥感估算模型[J]. 地球科学进展, 2011, 26(3): 295-299.
[4] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[5] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[6] 徐春亮,陈彦,贾明权,刘增灿,卢海平,童玲. 典型地物后向散射特性的测量与分析[J]. 地球科学进展, 2009, 24(7): 810-816.
[7] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[8] 吕恒;江南;李新国;. 内陆湖泊的水质遥感监测研究[J]. 地球科学进展, 2005, 20(2): 185-192.
阅读次数
全文


摘要