地球科学进展 ›› 2009, Vol. 24 ›› Issue (7): 681 -696. doi: 10.11867/j.issn.1001-8166.2009.07.0681

实验进展综述    下一篇

黑河流域遥感-地面观测同步试验:森林水文和中游干旱区水文试验
马明国 1,刘强 2,阎广建 3,陈尔学 4,肖青 2,苏培玺 1,胡泽勇 1,李新 1,牛铮 2,王维真 1,钱金波 1,宋怡 1,丁松爽 1,辛晓洲 2,任华忠 3,黄春林 1,晋锐 1,车涛 1,楚荣忠 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;   2.中国科学院遥感应用研究所,北京 100101;
    3.北京师范大学遥感科学与国家重点实验室,地理学与遥感科学学院,北京 100875;4.中国林业科学研究院资源信息研究所,北京 100091
  • 收稿日期:2009-02-18 修回日期:2009-06-05 出版日期:2009-06-10
  • 通讯作者: 马明国 E-mail:mmg@lzb.ac.cn
  • 基金资助:

    中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09-03);中国科学院“西部之光”人才培养计划项目“黑河上游毒草的遥感监测与空间分布规律研究”(编号:CACXO728501001);国家重点基础研究发展计划项目“陆表生态环境要素主被动遥感协同反演理论与方法”(编号:2007CB714401)资助.

Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin: Experiment of Forest Hydrology and Arid Region Hydrology in the Middle Reaches

Ma Mingguo 1, Liu Qiang 2, Yan Guangjian 3, Chen Erxue 4, Xiao Qing 2, Su Peixi 1, Hu Zeyong 1, LI Xin 1, Niu Zheng 2, Wang Weizhen 1, Qian Jinbo 1, Song Yi 1, Ding Songshuang 1, Xin Xiaozhou 2, Ren Huazhong 3, Huang Chunlin 1, Jin Rui 1, Che Tao 1, Chu Rongzhong 1   

  1. 1.Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000, China;
    2.Institute of Remote Sensing Applications, Chinese Academy of Sciences,Beijing 100101, China;
    3.State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China;
    4.Institute of Forest Resources Information Research, Chinese Academy of Forestry, Beijing 100091, China
  • Received:2009-02-18 Revised:2009-06-05 Online:2009-06-10 Published:2009-07-10
  • Contact: Mingguo Ma E-mail:mmg@lzb.ac.cn

主要介绍了黑河流域遥感—地面观测同步试验(Watershed Allied Telemetry Experimental Research, WATER)的第二阶段,即以森林水文过程及中游干旱区生态水文过程为主要目标的中游试验。简要阐述了试验目标与研究内容,重点介绍了航空飞行试验、地面同步试验和加密观测试验的样方布置、数据获取与处理以及研究进展与展望。中游试验的核心研究内容是紧密围绕森林水文及中游干旱区水文的水循环问题开展航空遥感、地面同步观测试验和水文与生态参数加密观测试验,改善蒸散发反演模型和算法,探讨尺度转换方法。其中航空试验使用了微波辐射计、激光雷达(LiDAR)、高光谱成像仪、热红外成像仪和多光谱CCD相机5类传感器,飞行了17个架次和72个小时。

The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne and ground based remote sensing experiment in the Heihe river basin, which is the second largest inland river basin in the arid region of northwest China. WATER consists of the cold region, forest, and arid region hydrological experiments and its field campaigns include two phases. The first phase is an intensive observation period lasting from March 7 to April 12 , 2008 for the cold region and the second phase is that from May 15 to July 22 for the forest and arid regions, 2008. The second step is introduced in this paper. The scientific objectives and research tasks are briefly reviewed. The airborne sensors include microwave radiometers at L, K and Ka bands, imaging spectrometer, thermal imager, CCD and LIDAR. Seventeen missions were performed with 72-hour flying time. Simultaneous observations were performed in the foci experimental areas which include Dayekou watershed, Pailugou watershed, Huazhaizi desert, Yingke oasis, Zhangye city, Linze grassland, Linze station transitional zone. The sampling protocol, data acquirement and preprocessing, research advance and prospects are introduced in detail for these airborne and ground simultaneous experiments. 

中图分类号: 

[1] Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin: Scientific objectives and experiment design[J].Advances in Earth Science, 2008, 23(9):897-914.[李新,马明国,王建,等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008,23(9):897-914.]
[2] Li Xin, Li Xiaowen, Li Zengyuan, et al. Watershed allied telemetry experimental research[J].Journal of Geophysical Research-Atmosphere,2009(in press).
[3] Wang Jian, Che Tao, Zhang Lixin, et al. Introduction on the experiment of cold region hydrological remote sensing and ground-based synchronous observation in the upstream of Heihe basin[J].Journal of Glaciology and Geocryology,2009, 31(2): 189-197.[王建,车涛,张立新,等. 黑河流域上游寒区水文遥感—地面同步观测试验介绍[J].冰川冻土, 2009,31(2):189-197.]
[4] Fang Li, Liu Qiang, Xiao Qing, et al. Design and implementation of airborne wide-angle infrared dual-mode line/area array scanner in Heihe experiment[J].Advances in Earth Science, 2009, 24(7):696-704.[方莉,刘强,肖青,等.黑河试验中机载红外广角双模式成像仪的设计及实现[J].地球科学进展,2009,24(7):696-704.]
[5] Tan Junlei, Ma Mingguo, Che Tao, et al. A Study of interception of Picea Crassifolia based on different canopy closure[J].Advances in Earth Science,2009, 24(7):825-833.[谭俊磊,马明国,车涛,等.基于不同郁闭度的青海云杉冠层截留特征研究[J].地球科学进展,2009,24(7):825-833.]
[6] Jin Ming, Li Xiaoxiong, Liu Xiande, et al. Ecohydrology of the shrublands in the Xishui experimental station on the northern slope of the Qilian Mountains, Gansu, China[J].Hydrological Processes,2009 (in press).
[7] Wang Xufeng, Ma Mingguo. Carbon and water fluxes of cornfield simulated with LPJ model[J].Advances in Earth Science, 2009, 24(7):734-740.[王旭峰,马明国.基于LPJ模型的制种玉米碳水通量模拟研究[J].地球科学进展,2009,24(7):734-740.]
[8] Chen Ling, Yan Guangjian, Li Jing, et al.Footprint Uncertainty analysis for ground-based multiangular measurement of row crops[J].Advances in Earth Science, 2009, 24(7):793-802.[陈玲,阎广建,李静,等.行播作物地面方向性测量的视场不确定性分析[J].地球科学进展,2009,24(7):793-802.]
[9] Kang Guoting, Yan Guangjian, Ren Huazhong, et al. A comparison of different ground-based radiative temperature measurement methods on the field patch scale[J]. Advances in Earth Science,2009, 24(7):784-792.[康国婷,阎广建,任华忠,等.田块尺度作物辐射温度获取方法对比研究[J].地球科学进展,2009,24(7):784-792.]
[10] Zhao Tianjie, Zhang Lixin, Jiang Lingmei, et al. Joint inversion of soil moisture using active and passive microwave data[J].Advances in Earth Science, 2009, 24(7):769-776.[赵天杰,张立新,蒋玲梅,等.利用主被动微波数据联合反演土壤水分[J]. 地球科学进展,2009,24(7):769-776.]
[11] Xu Chunliang, Chen Yan, Jia Mingquan, et al. Measurement and analysis of backscattering properties on typical surface features[J].Advances in Earth Science, 2009, 24(7):810-816.[徐春亮,陈彦,贾明权,等.典型地物后向散射特性的测量与分析[J]. 地球科学进展,2009,24(7):810-816.]
[12] Ran Youhua, Li Xin, Wang Weizhen, et al. Grid scale temporal stability of multi-layer soil moisture in a grassland ecosystem in western China[J].Advances in Earth Science, 2009, 24(7):817-824.[冉有华,李新,王维真,等.黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J].地球科学进展,2009,24(7):817-824.]
[13] Patrick Thomas Philipp Klenk. Determining Spatial Structures of Soil Water Content Obtained From Multichannel Ground-penetrating Radar Measurements[D]. Heidelberg: Heidelberg University,81-102.
[14] Qian Jinbo,Ma Mingguo. Coverage estimation on Stellera chamaejasme L based on digital photos[J]. Advances in Earth Science, 2009, 24(7):776-783.[钱金波,马明国.基于数码照片的狼毒盖度估算[J].地球科学进展,2009,24(7):776-783.]
[15] Guo Zhao, Rongzhong Chu, Tong Zhang, et al. Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution[J].Hydrology and Earth System Sciences,2009 (in press).
[16] Wang Weizhen, Xu Ziwei, Liu Shaomin, et al. The characteristics of heat and water vapor fluxes over different surfaces in the Heihe river basin[J].Advances in Earth Science, 2009, 24(7):714-723.[王维真,徐自为,刘绍民,等.黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展,2009,24(7):714-723.]
[17] Shuang Xi, Liu Shaomin,Xu Ziwei, et al. Investigation of spatial representativeness for surface flux measurements in the Heihe river basin[J].Advances in Earth Science, 2009, 24(7):724-733.[双喜,刘绍民,徐自为,等.黑河流域观测通量的空间代表性研究[J]. 地球科学进展,2009,24(7):724-733.]

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[12] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[13] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[14] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[15] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
阅读次数
全文


摘要