地球科学进展 ›› 2008, Vol. 23 ›› Issue (9): 952 -958. doi: 10.11867/j.issn.1001-8166.2008.09.0952

研究论文 上一篇    下一篇

长江流域河水和悬浮物的锂同位素地球化学研究
汪齐连 1,2,刘丛强 1,赵志琦 1,B.Chetelat 1,丁虎 1,2   
  1. 1.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550002;2.中国科学院研究生院,北京 100039
  • 收稿日期:2008-04-21 修回日期:2008-07-14 出版日期:2008-09-10
  • 通讯作者: 刘丛强(1955-),男,贵州遵义人,研究员,博士生导师,主要从事地表地球化学过程及其环境效应方面的研究. E-mail:liucongqiang@vip.skleg.cn
  • 基金资助:

    国家自然科学基金重点项目“乌江水能开发对流域水环境影响的因素辨识及其表征体系研究”(编号:90610037);国家自然科学基金面上项目“流域侵蚀过程的锂同位素分馏”(编号:40773006)资助.

Lithium Isotopic Composition of the Dissolved and Suspended Loads of the Yangtze River,China

Wang Qilian 1,2,Liu Congqiang 1,Zhao Zhiqi 1,Chetelat Benjami 1,Ding Hu 1,2   

  1. 1.State Key Laboratory of Environment Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China;2.Graduate University of Chinese Academy of Sciences,Beijing 100039,China
  • Received:2008-04-21 Revised:2008-07-14 Online:2008-09-10 Published:2008-09-10

深入理解流域侵蚀过程中的锂同位素分馏对于运用锂同位素来示踪化学循环和气候变化是十分必要的。研究集中在长江干流和主要支流的水体和悬浮物的锂及锂同位素组成。长江流域水体的锂及锂同位素组成(δ7Li)分别为150~4 570 nmol/L和+7.6‰~+28.1‰,两者沿上游至下游的变化趋势相反。悬浮物锂同位素组成(δ7Li)变化比较稳定,分别为41~92 μg/g和-4.7‰~+0.7‰,而且总是低于相应水体的锂同位素组成。悬浮物和流体之间的锂同位素分馏系数在0.977和0.992之间,与悬浮物的量及组成存在明显相关性,反映了粘土矿物的吸附和化学风化的程度。锂含量与锂同位素组成之间良好的负相关性表明流域水体的锂来自2个端元混合:其一可能是蒸发盐岩,并伴有深部热泉水;其二可能是硅酸岩。

A comprehensive understanding of lithium-isotope fractionation during terrestrial weathering is necessary in order to use lithium isotopes to trace chemical cycle and climatic changes. This study investigates lithium and lithium isotopic composition in the main tributaries and the main Yangtze river channel. The concentrations and isotopic compositions (δ7Li) of dissolved Li in the Yangtze river are in the range of 150n mol/L~4570n mol/L and in the range of +7.6‰~+28.1‰ respectively. Lithium isotopic compositions (δ7Li) of the suspended matter are relatively stable (-4.7‰~+0.7‰), and lighter than those of dissolved Li in the Yangtze river. Isotopic fractionation factors of between dissolved and suspended loads range from 0.977 to 0.992, and are corrected with the concentration and chemical composition of suspended matter in the Yangtze river main channel. This should reflect the adsorption of clay mineral and the degree of chemical weathering. The positive relationship between δ7Li and 1/Li for the dissolved load shows that the dissolved lithium probably has two main sources. One may be evaporites with some thermal spring, and another one may be silicates.

中图分类号: 

[1] Huh Y,Chan L H,Zhang L B,et al. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta,1998,6212:2 039-2 051.

[2] Huh Y,Chan L H,Edmond J M. Lithium isotopes as a probe of weathering processes: Orinoco river[J]. Earth and Planetary Science Letters,2001,1941/2:189-199.

[3] Pogge von Strandmann P A E,Burton K W,James R H,et al. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain[J]. Earth and Planetary Science Letters,2006,2511/2:134-147.

[4] Kisakürek B,James R H,Harris N B W. Li and δ7Li in himalayan rivers: Proxies for silicate weathering[J]. Earth and Planetary Science Letters,2005,2373/4:387-401.

[5] Ding T,Wan D,Wang C,et al. Silicon isotope compositionsof dissolved silicon and suspended matter in the Yangtze river,China[J]. Geochimca et Cosmochimca Acta,2004,68:205-216.

[6] Wang Qilian,Zhao Zhiqi,Liu Congqiang,et al. Separation and isotopic determination of lithium in natural samples[J]. Chinese Journal of Analytical Chemistry,2006,346:764-768.[汪齐连,赵志琦,刘丛强,.天然样品中锂的分离及其同位素比值的测定[J].分析化学,2006,346:764-768.]

[7] Chetelat B,Liu C Q,Zhao Z Q,et al. Geochemistry of the dissolved load of the Changjiang basin rivers: Anthropogenic impacts and chemical weathering[J]. Geochimca et Cosmochimca Acta,2008in press.

[8] Pistiner J S,Henderson G M. Lihtium-isotope fraction during continental weathering processes[J]. Earth and Planetary Science Letters,2003,2141/2:327-339.

[9] Zhang L B,Chan L H,Gieskes J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J]. Geochimica et Cosmochimica Acta,1998,6214:2 437-2 450.

[10] Tardy Y,Krempp G,Trauth N. Le lithium dans les minéraux argileux des sédiments et des sols[J]. Geochimica et Cosmochimica Acta,1972,364:397-412.

[11] StoffynEgli P,Mackenzie F T. Mass balance of dissolved lithium in the oceans[J]. Geochimca et Cosmochimca Acta,1984,484:859-872.

[12] Dong Jihe. Research and application of trace elements in halite[J]. Acta Mineralogical Sinica,1984,1:29-35.[董继和.石盐中微量元素的研究及其应用[J]. 矿物学报,1984,1:29-35.]

[13] Xiao Yingkai,Qi Haiping,Wang Yunhui,et al. Isotopic composition of lithium in the brine, sediments and source water from Da Qaidam lake of Qinhai province[J]. Geochemistry,1994,234:329-337.[肖应凯,祁海平,王蕴慧,.青海柴达木湖卤水、沉积物和水源水中的锂同位素组成[J].地球化学,1994,234:329-337.]

[14] Chan L H,Kastner M. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone:Implications for fluid processes and sediment contribution to the arc volcanoes[J]. Earth and Planetary Science Letters,2000,1831/2:275-290.

[15] You C F,Chan L H. Precise determination of lithium isotopic composition in low concentration natural samples[J]. Geochimca et Cosmochimca Acta,1996,605:909-915.

[1] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[2] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[3] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[4] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[5] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[6] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[7] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[8] 于宗仁, 王彦武, 王小伟, 赵林毅, 郭青林, 王旭东. 壁画盐害水汽来源研究——以隆兴寺为例[J]. 地球科学进展, 2017, 32(6): 668-676.
[9] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[10] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[11] 王春连,刘成林,王立成,张林兵. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976-987.
[12] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[13] 吴婷,夏传俊,赵娟. 森林凋落叶分解过程中单萜烯排放研究进展[J]. 地球科学进展, 2012, 27(7): 717-724.
[14] 陶贞,张超,高全洲,李元. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.
[15] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
阅读次数
全文


摘要