地球科学进展 ›› 2008, Vol. 23 ›› Issue (11): 1161 -1166. doi: 10.11867/j.issn.1001-8166.2008.11.1161

所属专题: IODP研究

IODP研究 上一篇    下一篇

IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示
李清 1,2,王家生 1,2*,王晓芹 1,2,陈祈 3,陈洪仁 1,2   
  1. 1. 中国地质大学生物地质与环境地质教育部重点实验室,湖北 武汉 430074;2. 中国地质大学地球科学学院,湖北 武汉 430074;3. 中石化江汉油田勘探开发研究院,湖北 潜江433124
  • 收稿日期:2008-08-10 修回日期:2008-10-09 出版日期:2008-11-10
  • 通讯作者: 王家生(1963-),男,浙江慈溪人,教授,博士生导师,从事海洋地质和造山带地质研究. E-mail:js-wang@cug.edu.cn
  • 基金资助:

    国家自然科学基金项目“海洋天然气水合物地质系统的沉积物粒度制约、自生矿物和有孔虫响应”(编号:40772073);中国综合大洋钻探计划(IODP-China);中石化海相油气勘探前瞻性项目“海相优质烃源岩形成的地球生物学过程”(编号:G0800-06-ZS-319)联合资助.

Stable Carbon Isotopic Response of the Benthic Foraminifera from IODP311 to the Marine Methane Hydrate Geo-system

Li Qing 1,2,Wang Jiasheng 1,2,Wang Xiaoqin 1,2,Chen Qi 3,Chen Hongren 1,2   

  1. 1.Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 2.Faculty of Earth Science, China University of Geosciences, Wuhan 430074, China; 3. Exploration and Development Research Institute Sinopec Jianghan Oilfield, Qianjiang 433124, China
  • Received:2008-08-10 Revised:2008-10-09 Online:2008-11-10 Published:2008-11-10

为了探索海洋天然气水合物背景下有孔虫特征的响应,对综合大洋钻探计划(IODP) 311航次岩芯沉积物中底栖有孔虫Uvigerina peregrinaBulimina mexicana进行了初步研究。通过对冷泉站位U1328和毗邻的非冷泉站位U1327沉积物中底栖有孔虫Uvigerina peregrinaBulimina mexicana的显微形貌特征和碳、氧稳定同位素测试等,证实有孔虫壳体未受到后期成岩作用的改造和自生碳酸盐岩的交代影响,有孔虫壳体的碳稳定同位素呈现明显的负偏。其中U1327站位中U.peregrina δ13C为-0.67‰~-2.75‰(PDB),B.mexicanaδ13C为-0.51‰~-1.52‰(PDB);U1328站位中U.peregrina δ13C为 -0.72‰~-2.71‰(PDB),B.mexicanaδ13C为 -0.58‰~-1.45‰(PDB)。底栖有孔虫壳体的碳稳定同位素负偏成因可能与水合物不稳定分解释放的甲烷厌氧氧化作用和食物源有关,因而可较好地指示海底天然气水合物系统地质背景。

A preliminary research of the benthic Foraminifera from Integrated Ocean Drilling Program (IODP) Expedition 311 has been carried out for the purpose of better understanding their stable carbon isotopic response to the marine gas hydrate geo-system. SEM photographs and stable oxygen isotopes of the species Uvigerina peregrina and Bulimina mexicana indicated that diagenesis and authigenic carbonate precipitation had little effect on Foraminifera. Uvigerina peregrina and Bulimina mexicana collected from the sediments in seepage Site U1328 and in adjacent non-seepage Site U1327 exhibited a distinct negative δ13C excursion with values of U. peregrina -0.67‰~-2.75‰ PDB, B. mexicana -0.51‰~-1.52‰ PDB in Site U1327 and U. peregrina-0.72‰~-2.71‰ PDB, B.mexicana -0.58‰~-1.45‰ PDB in Site U1328 respectively. The formation of distinct stable carbon isotopic excursions of benthic Foraminifera could be most likely interpreted by the involvement of both anaerobic oxidation of methane (AOM) and food sources in sediments. The distinct negative carbon isotopic excursion of benthic Foraminifera thus could be believed as one of indicators to recognize the marine gas hydrate geo-system.

中图分类号: 

[1] Martin R A,Nesbitt E A,Campbell K A. Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps,Cascadia accretionary margin[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,246:260-277.

[2] Niewohner C,Hensen C,Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta,1998,62:455-464.

[3] Rathburn A E,Levin L A,Held Z,et al. Benthic foraminifera associated with cold methane seeps on the northern California margin:Ecology and stable isotopic composition[J]. Marine Micropaleontology,2000,38:247-266.

[4] Hill T M,Kennett J P,Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel,California[J]. Marine Micropaleontology,2003,49:123-138.

[5] Chen Fang,Su Xin,Lu Hongfeng,et al. Carbon stable isotopic composition of benthic foraminiferas from the north of the south China sea:Indicator of methane-rich environment[J]. Marine Geology and Quaternary Geology,2007,27:1-7.[陈芳,苏新,陆红锋,.南海北部浅表层沉积底栖有孔虫碳同位素及其对富甲烷环境的指示[J]. 海洋地质与第四纪地质,2007,27:1-7.]

[6] Wefer G,Heinze P-M,Berger W H. Clues to ancient methane release[J]. Nature,1994,369:282.

[7] Garidel-Thoron T D,Beaufort L,Bassinot F,et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode[J]. Proceedings of the National Academy of Sciences,2004,101:9 187-9 192.

[8] Barbieri R,Panieri G. How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy[J]. Paleogeography,Paleoclimatology,Paleoecology,2004,204:257-275.

[9] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall TroughNE Atlantic[J]. Geobios,2005,38:247-255.

[10] Kennett J P,Cannariato K G,Hendy I L,et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science,2000,288:128-133.

[11] Sen Gupta B K,Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters,1994,14:88-96.

[12] Hill T M,Kennett J P,Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps,Hydrate Ridge,northeast Pacific[J]. Geochimica et Cosmochimica Acta,2004,68:4 619-4 627.

[13] Sen Gupta B K,Platon E,Bernhard J M,et al. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope[J]. Journal of Foraminiferal Research,1997,27:292-300.

[14] Expedition 311 Scientists. Cascadia Margin Gas Hydrates[R]. IODP Preliminary Report,2005,311,doi:10:2204/ iodp.pr.311.

[15] Riedel M. Three dimensional seismic investigations of northern Cascadia marine gas hydrates[Z]. Canada:University of Victoria,2001.

[16] Rathburn A E,Perez M E,Martin J B,et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2003,4:1 106.

[17] Martin J B,Day S A,Rathburn A E,et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2004,5,Q04004,doi:10.1029/2003GC000629.

[18] Panieri G. Foraminiferal response to an active methane seep environment:A case study from the Adriatic sea[J]. Marine Micropaleontology,2006,61:116-130.

[19] Spero H J,Lea D W. Experimental determination of stable isotope variability in Globigerina bulloides:Implications for paleoceanographic reconstructions[J]. Marine Micropaleontology,1996,28:231-246.

[20] Hallam S J,Putnam N,Preston C M,et al. Reverse Methanogenesis:Testing the Hypothesis with environmental genomics[J]. Science,2004,305:1 457-1 462.

[21] Hoehler T M,Alperin M J,Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochem Cycles,1994,8:451-463.

[22] Boetius A,Ravenschlag K,Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407:623-626.

[23] Hinrichs K U,Boetius A. The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry[C]Wefer G,Billet D,Hebbeln D,eds. Ocean Margin Systems. Heidelberg:Springer-Verlag,2002:457-477.

[24] Hinrichs K U,Hayes J M,Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999,398:802-805.

[25] Lanoil B D,Sassen R,La Duc M T,et al. Bacteria and archaea physically associated with gulf of mexico gas hydrates[J]. Applied and Environmental Microbiology,2001,67:5 143-5 153.

[26] Michaelis W,Seifert R,Nauhaus K,et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1 013-1 015.

[27] Orphan V J,Hinrichs K U,Ussler W,et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in Anoxic Marine Sediments[J]. Applied and Environmental Microbiology,2001,67:1 922-1 934.

[28] Thomsen T R,Finster K,Ramsing N B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment[J]. Applied and Environmental Microbiology,2001,67:1 646-1 656.

[29] Jiasheng W,Wang Y,Li Q. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments: A review[J]. Frontiers of Earth Science in China,2007,1:444-451.

[1] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[2] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[3] 王家生,高钰涯,李清,杨翠萍,陈祈,魏清,王晓芹,胡高伟. 沉积物粒度对水合物形成的制约:来自IODP 311航次证据[J]. 地球科学进展, 2007, 22(7): 659-665.
[4] 林田;郭志刚;杨作升. 类脂化合物单体碳稳定同位素在古气候环境研究中的意义[J]. 地球科学进展, 2005, 20(8): 910-915.
[5] 张江勇;汪品先. 深海研究中的底栖有孔虫:回顾与展望[J]. 地球科学进展, 2004, 19(4): 545-551.
阅读次数
全文


摘要