地球科学进展 ›› 2008, Vol. 23 ›› Issue (11): 1150 -1160. doi: 10.11867/j.issn.1001-8166.2008.11.1150

所属专题: IODP研究

IODP研究 上一篇    下一篇

东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介
郑洪波 1,汪品先 1,刘志飞 1,杨守业 1,王家林 1,李前裕 1,周祖翼 1,贾军涛 1,李上卿 2,贾健宜 2,John Chappell 3,Yoshiki Saito 4,Takahiro Inoue 4   
  1. 1.同济大学海洋地质国家重点实验室,同济大学海洋与地球科学学院,上海 200092;2.中国石油化工总公司上海海洋石油公司,上海 200000;3.澳大利亚国立大学地球科学研究院,堪培拉,澳大利亚;4.日本地质调查局,AIST 东京,日本
  • 收稿日期:2008-08-10 修回日期:2008-10-09 出版日期:2008-11-10
  • 通讯作者: 郑洪波 E-mail:zhenghb@mail.tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“50万年以来高分辨率地磁场长期变化研究”(编号: 40676033);国家自然科学基金重点项目“长江中下游新生代沉积物源示踪及其环境演化意义”(编号: 40830107);国家自然科学基金创新群体项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40621063)资助.

Carving the History of East Asia′s East-Tilting Topography and East Asian Monsoon—An Introduction to IODP Proposal 683

Zheng Hongbo 1,Wang Pinxian 1,Liu Zhifei 1,Yang Shouye 1,Wang Jialin 1,Li Qianyu 1, Zhou Zuyi 1,Jia Juntao 1,Li Shangqing 2,Jia Jianyi 2,Chappell John 3,Saito Yoshiki 4,Inoue Takahiro 4   

  1. 1.State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China; 2. Shanghai Marine Petroleum Company, China Petroleum and Chemical Cooperation, Shanghai 200000, China; 3.Research School of Earth Sciences, Australian National University, Canberra, Australia; 4.Geological Survey of Japan, AIST, Japan
  • Received:2008-08-10 Revised:2008-10-09 Online:2008-11-10 Published:2008-11-10

围绕IODP 683号建议书,介绍东亚东倾地形格局与季风系统演化历史的相关研究。新生代全球宏观环境格局发生了一系列重大变化,表现为岩石圈活动强烈,板块漂移导致海陆格局和地貌格局的变化,并引发洋流和大气环流的改组,最终导致全球气候的重大变化。新生代岩石圈运动和气候变化表现最为典型的地区是亚洲,其中最具标志性和全球意义的地质事件是喜马拉雅山和青藏高原的隆升及亚洲季风系统的形成与演化。青藏高原隆升最直接的结果是亚洲地区现代地貌格局的形成,大江大河的发育,并在很大程度上影响了亚洲季风系统的形成与演化。综合大洋钻探计划683号航次建议书,计划在长江中下游盆地和东海陆架盆地实施钻探,以获得长江历史演化和东亚季风演化的地质记录,并为研究青藏高原的演化提供新的证据。

    Ocean drilling in the Bengal Fan has revealed the uplift history of the Himalayas and Indian monsoon, but there is no analogous deep-water fan in the Western Pacific marginal seas that can be drilled and used to constrain the Tibet uplift history from its eastern side. The Yangtze river, originating from northeastern Tibet and draining a large area prevailed by monsoon precipitation, is highly sensitive to plateau uplift and monsoon evolution. A systematical study of the Yangtze river deposits will test various hypotheses concerning plateau uplift and its link with monsoon evolution. Along the modern Yangtze river, the upper reach is decoupled from the lower reach by the Three Gorges. About 30% of the total sediment load from the Yangtze river is laid in the Jianghan Basin immediately out from the Gorges, ~40% is deposited in the lower reach and delta, and only ~30% is transported to the East China Sea. Therefore, a combination of ocean and continental drilling along the Yangtze River will recover records useful for carving the history of uplift and monsoon.
    A close timing of tectonic and climatic events mainly at four time intervals has been proposed as evidence for a link between Tibet uplift and the Asian monsoon initiation: the late Pliocene (2~3 Ma), the late Miocene (~8 Ma), the early-middle Miocene (~15 Ma) and the latest Oligocene (~25 Ma). On the basis of the Three Gorges incision or delta development data, however, the history of the Yangtze River can be traced back only to the late Pliocene or early Pleistocene, and the East China Sea came into existence only in the latest Miocene. A younger Yangtze river is in a sharp contrast to the early uplift of Tibet. In the Paleogene, a broad belt of aridity stretched across China from west to east, and numerous lake basins developed in rift grabens, prohibiting any east-flowing large rivers. Large rivers like the Yangtze river could have developed only since Neogene with the advent of an east-tilting topography and monsoon in East Asia. The proposed joint IODP/ICDP project will provide sediment records from marine and terrestrial basins to help clarify the most puzzling issues in East Asian environmental evolution and to test the hypothetical link between Tibetan uplift and monsoon climate from the eastern side of the plateau.

中图分类号: 

[1] Zheng H B,Wang P X,Liu Z F,et al. Carving the History of East Asia's East-Tilting Topography and East Asian Monsoon[R]. IODP Proposal,2007.

[2] Ruddiman W F. Tectonic Uplift and Climatic Change[M]. New York:Plenum Press,1997.

[3] Zheng H,Powell C,Rea D,et al. Late Miocene and mid-Pliocene enhancement of the east Asian Monsoon as viewed from land and sea[J]. Global and Planetary Change,2004,41:147-155.

[4] Wang Pinxian. Deformation of Asia and global cooling:Searching links between climate and tectonics[J]. Quaternary Sciences,1998,3:213-221.[汪品先. 亚洲形变与全球变冷——探索气候与构造的关系[J]. 第四纪研究,1998,3213-221.]

[5] Milliman J D,Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean:The importance of small mountainous rivers[J]. Journal of Geology,1992,100:525-544. 

[6] Zheng H,Powell C,An Z,et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology,2000,28:715-718.

[7] Galy A,France-Lanord C. Higher erosion rates in the Himalaya:Geochemical constraints on riverine fluxes[J]. Geology,2001,29:23-26.

[8] Li J J,Xie S Y,Kuang M S. Geomorphic evolution of the Yangtze gorges and the time of their formation[J]. Geomorphology,2001,41:125-136.

[9] Clift P D,Lee J I,Hildebrand P,et al. Nd and Pb isotope variability in the Indus River System:Implications for sediment provenance and crustal heterogeneity in the western Himalaya[J]. Earth and Planetary Science Letters,2002,200:91-106.

[10] Lee,Jae I,Clift,et al. Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains[J]. Sedimentary Geology,2003,160:243-257.

[11] Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia[C]Clift P. Geophysical Monograph Series 149-Continent-Ocean Interactions within the east Asian marginal seas. American Geophysical Union,2004:1-22.

[12] Zheng Hongbo. Land-ocean comparison and interactions in IODP[J]. Advances in Earth Science,2003,185:722-729.[郑洪波. IODP中的海陆对比和海陆相互作用[J]. 地球科学进展,2003,185:722-729.]

[13] Zheng H,Ji J,Huang X,et al. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7:Implication for the Yellow River running through the Sanmen Gorge[J]. Geomorphology,2007,85:131-142.

[14] Decelles P G,Gehrels G E,Quade J,et al. Neogene foreland basin deposits,erosional unroofing,and the kinematic history of the Himalayan fold-thrust belt,western Nepal[J]. Geological Society of America Bulletin,1998,1:2-21.

[15] Molnar P,Burchfiel B C,Lian K,et al. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and quatative estimates of its contribution to the convergence of India and Eurasia[J]. Geology,1987,15:249-253.

[16] Quade J,Cerling T E,Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistman[J]. Nature,1989,342:163-165.

[17] Kroon D,Steens T,Troelstra S R. Onset of Monsoonal Related Upwelling in the Western Arabian Sea as Revealed by Planktonic Foraminifers[M]. Proceedings of the Ocean Drilling Program,Scientific Results,1991,117:257-263.

[18] Li J. The Uplift of the Qinghai-Xizang plateau and its effect on environment[C]Liu T S,ed. Quaternary Geology and Environments in China. Beijing: Science Press,1991:265-272.

[19] Zheng H,Huang X,Butcher K. Lithostratigraphy,petrography and facies analysis of the Late Cenozoic sediments in the foreland basin of the west Kunlun[J]. Paleogeography,Paleoclimatology,Paleoecology,2006,241:61-78.

[20] Ruddiman W F,Kutzbach J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west[J]. Journal of Geophysical Research,1989,94:409-418.

[21] An Z S. The history and variability of the east Asian paleomonsoon climate[J]. Quaternary Science Reviews,2000,19:171-187.

[22] Ding Z L,Sun J M,Liu T S,et al. Wind-blown origin of the Pliocene red clay formation in the central Loess plateau[J]. Earth and Planetary Science Letters,1998,161:135-143.

[23] Guo Z T,Ruddiman W,Hao Q Z,et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposits in China[J]. Nature,2002,416:159-163.

[24] Sun X J,Wang P X. How old is the Asian monsoon?Palaeobotanical constraints from China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2005,222:181-222.

[25] Fan Daidu,Li Congxian. Reviews on researches of timing the Yangtze draining the Tibetan plateau to the east China sea[J]. Marine Geology & Quaternary Geology,2007,272:121-131.[范代读,李从先.长江贯通时限研究进展[J]. 海洋地质与第四纪地质,2007,272):121-131.]

[26] Yuan Fuli. A complementary study of evolution history of the Yangtze river[J]. Yangtze River,1957,2:1-9.[袁复礼.长江河流发育史的补充研究[J]. 人民长江,1957,2):1-9.]

[27] Lee C. The development of the upper Yangtze valley[J]. Bulletin of the Geological Society of China,1933,13:107-117.

[28] Barbour G B. Physiographic history of the Yangtze[J]. Geographical Journal,1936,87:17-34.

[29] Clark M K,Schoenbohm L M,Royden L H,et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics,2004,23,TC 1006,doi:10.1029/2002TC001402.

[30] Ren Meie,Bao Haosheng,Han Tongchun. Geomorphology of the Jinsha River valley and it s river capture in northwestern Yunnan[J]. Acta Geographica Sinica,1959,252:135-155.[任美锷,包浩生,韩同春. 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报,1959,252):135-155.]

[31] Yang Dayuan. Study on the Changjiang River[M] . Nanjing:Hehai University Press,2004:1-214.[杨达源.长江研究[M]. 南京:河海大学出版社,2004:1-214.]

[32] Zeng Pusheng. Relationship between the formation of the first bend of Changjiang river and the magmatic activity in Laojunshan district[J]. Acta Geographica Sinica,2002,573:310-316.[曾普胜. 滇西北地区岩浆活动与长江第一弯形成的关系[J]. 地理学报,2002,573):310-316.]

[33] Shen Yuchang. The Valley Landform of the Upper Yangtze[M]. Beijing:Science Press,1965.[沈玉昌.长江上游河谷地貌[M]. 北京:科学出版社,1965.]

[34] Xiang Fang,Zhu Lidong,Wang Chengshan,et al. Terrace age correlation and it s significance in research of Yangtze Three Gorges,China[J]. Journal of Chengdu University of TechnologyScience & Technology Edition,2005,322:162-166.[向芳,朱利东,王成善,. 长江三峡阶地的年代对比法及其意义[J]. 都理工大学学报:自然科学版,2005,322):162-166.]

[35] Li Chengsan. History of the Yangtze river[J]. Journal of Geography,1944,4:3-14.[李承三. 扬子江水系发育史[J] .地理,1944,43-14.]

[36] Clift P D,Blusztajin J,Duc N A. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi basin[J]. Vietnam Geophysical Research Letters,2006,33,L19403,doi:10.1029/2006GL027772.

[37] Fan Daidu,Li Congxian,Kazumi Y,et al. Monazite age spectra in the late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run through time[J]. Science in ChinaSeries D,2005,4810: 1 718-1 727.[范代读,李从先,Yokoyama K,.长江三角洲晚新生代地层独居石年龄与长江贯通时间研究[J]. 中国科学:D,2004,3411):1 015-1 022.]

[38] Yang S Y,Li C X,Yokoyama K. Elemental compositions and monazite age patterns of core sediments in the Changjiang delta:Implications for sediment provenance and development history of the Changjiang river[J]. Earth and Planetary Science Letters,2006,245:762-776.

[39] Yang Shouye,Jiang Shaoyong,Ling Hongfei,et al. The Sr-Nd isotopic composition and provenance tracing of sediments to the Yangtze river[J]. Science in ChinaSeries D,2007,375: 682-690.[杨守业,蒋少涌,凌洪飞,.长江河流沉积物Sr-Nd 同位素组成与物源示踪[J]. 中国科学:D,2007,375):682-690.]

[40] Xu Zhengyu,Lu Wenzhong,Lin Ge,et al. Discrepant uplifting processes of the Qingling-Dabie and Jianguan orogens: Evidence from Meso-Cenozoic sedimentary records in the Jianghan superimposed basin[J]. Chinese Journal of Geology,2005,402:179-197.[ 徐政语,卢文忠,林舸,. 秦岭大别造山带与江南造山带的差异隆升——来自江汉盆地中新生代沉积记录的证据[J]. 地质科学,2005,402:179-197.]

[41] Wang Y. Sediment supply to the continental shelf by the major rivers of China[J]. Journal of Geological Society,London,1986,143:935-944.

[42] Zhao Jinhai. The forming factors and evolution of the Mesozoic and Cenozoic basin in the east China sea Part 1[J]. Offshore Oil,2004,244:6-14.[赵金海.东海中、新生代盆地成因机制和演化(上)[J]. 海洋石油,2004,244):6-14.]

[43] Huang Xiangtong,Zheng Hongbo,Yang Shouye,et al. Paleomagnetic ages of core DY03 and stratigraphic correlation of the Yangtze delta[J]. Marine Geology and Quaternary Geology,2008,28in press.[黄湘通,郑洪波,杨守业,.长江三角洲DY03孔古地磁年龄与地层对比[J]. 海洋地质与第四纪地质,2008,28(待刊).]

[44] Zhao Jinhai. The forming factors and evolution of the Mesozoic and Cenozoic basin in the east China sea Part 2[J]. Offshore Oil,2005, 251: 1-10.[赵金海. 东海中、新生代盆地成因机制和演化(下) [J]. 海洋石油,2005,251:1-10.]

[45] Brookfield M E. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards[J]. Geomorphology,1998,22:285-312.

[46] Park J O,Tokyyama H,Shinohara M,et al. Seismic record of tectonic evolution and backarc rifting in the south Ryukyu island arc system[J]. Tectonopgysics,1998,294:21-42.

[47] Oguria K,Matsumotob E,Masatoshi Y,et al. Sediment accumulation rates and budgets of depositing particles of the East China Sea[J]. Deep-Sea Research II,2003,50:513-528.

[48] Huang C Y,Chiu Y L,Zhao M X. Core description and a preliminarily sedimentology study of Site 1202D,Leg 195,in the southern Okinawa Trough[J]. Terrestrial,Atmospheric and Oceanic Sciences,Taipei,2005,16:19-44.

[49] Allegre C J,Dupre B,Negrel P,et al. Sr-Nd-Pb isotope systematics in Amazon and Congo river systems:Contraints about erosion processes[J]. Chemical Geology,1996,131:93-112.

[50] Pierson-Wickmann A C,Reisberg L,France-Lanord C,et al. Os-Sr-Nd results from sediments in the Bay of Bengal:Implication for sediment transport and the marine Os record[J]. Paleoceanography,2001,16:435-444. 

[51] Clift P D,Shimizu N,Layne G D,et al. Tracing patterns of erosion and drainage in the Paleogene Himalaya through ion probe Pb isotope analysis of detrital K-feldspars in the Indus Molasse,India[J]. Earth and Planetary Science Letters,2001,188:475-491.

[52] Veevers J J,Saeed A,Belousova E A,et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modem sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgam Craton[J]. Earth Science Reviews,2005,68:245-279.

[53] Yang S Y,Jung H S,Choi M S,et al. The rare earth element compositions of the ChangjiangYangtze and HuangheYellow river sediments[J]. Earth and Planetary Science Letters,2002,201:407-419.

[54] Goldstein S L,Arndt N T,Stallard R F. The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river sediments[J]. Chemical Geology,1997,139:271-286.

[55] Yuan H L,Wu F Y,Gao S,et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin,2003,48 22:2 411-2 421.

[56] Li Shuguang,Liu Deliang,Chen Yizhi,et al. Neodymium isotopic compositions of continental crust in the northern margin of Yangtze block and its tectonic implications[J]. Geochimica,1994,23suppl.:10-17.[李曙光,刘德良,陈移之,.扬子陆块北缘地壳的钕同位素组成及其构造意义[J].地球化学,1994,23(增刊):10-17.]

[57] Li Xianhua,McCulloch M T. Nd isotopic evolution of sediments from the southern margin of the Yangtze block and its tectonic significance[J]. Actapetrologica Sinica,1996,123:360-369.[李献华,McCulloch M T.扬子南缘沉积岩的Nd同位素演化及其大地构造意义[J]. 岩石学报,1996,123):360-369.]

[58] Gao Shan,Qiu Y M,Ling Wenli,et al. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for >3.2 Ga old continental crust in the Yangtze craton[J]. Science in ChinaSeries D,2001, 31:27-35.[高山,Qiu Y M,凌文黎,. 崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究扬子克拉通>3.2Ga陆壳物质的发现[J]. 中国科学:D,2001,311):27-35.]

[59] Yang Shouye,Li Congxian,Zhu Jinchu,et al. Provenance indicator of chemical fingerprint of magnetite from the Yangtze river and the Yellow river sediments[J]. Geochimica,2000,29:480-484.[杨守业,李从先,朱金初,.长江与黄河沉积物中磁铁矿成分标型意义[J]. 地球化学,2000,295):480-484.]

[60] Yang Shouye,Wei Gangjian,Xia Xiaoping,et al. Provenance study of the Late Cenozoic sediments in the Changjiang delta: REE and Nd isotopic constraints[J].Quaternary Sciences,2007,273:339-346.[杨守业,韦刚健,夏小平,.长江口晚新生代沉积物的物源研究:REENd同位素制约[J]. 第四纪研究,2007,273):339-346.]

[61] Zheng Hongbo,Huang Xiangtong,Xiang Fang,et al. Cosmogenic nuclides 10Be:New approach to estimate erosion rate of Yangtze catchment[J]. Journal of Tongji University,2005,339:1 160-1 165.[郑洪波,黄湘通,向芳,.宇宙成因核素10Be:估算长江流域侵蚀速率的新方法[J]. 同济大学学报,2005,339):1 160-1 165.]

[62] Chappell J,Zheng H. Sand movement through the Yangtse river system:Estimates from cosmogenic 10Be[J]. Paleogeography,Paleoclimatology,Paleoecology,2006,241:71-94.

[63] Liu J P,Xu K H,Li A C,et al. Flux and fate of the Yangtze river sediment delivered to the east China sea[J]. Geomorphology,2007,85314:208-224.

[64] Li P L,Hu Z H,Xu J Z. Marine paleocene in the Taibei depression,the east China sea basin[C]Proceeding of International Symposium on Petroleum Geology in the East China Sea.Shanghai:Tongji University Press,1996:1-12.

[65] Wei K Y,Mii H S,Huang C Y. Age model and oxygen isotope stratigraphy of site ODP1202 in the southern Okinawa trough[J]. Northwestern Pacific Terrestrial Atmospheric and Oceanic Sciences,2005,161:1-17.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[10] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[11] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要