地球科学进展 ›› 2007, Vol. 22 ›› Issue (8): 810 -817. doi: 10.11867/j.issn.1001-8166.2007.08.0810

综述与评述 上一篇    下一篇

大气水文模式耦合研究综述
杨传国 1,2, 林朝晖 2, 郝振纯 1, 余钟波 1, 刘少峰 2   
  1. 1. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098;2. 中国科学院大气物理研究所, 北京 100029
  • 收稿日期:2005-09-20 修回日期:2006-06-12 出版日期:2007-08-10
  • 通讯作者: 杨传国(1981-),男,山东青州人,博士研究生,主要从事水文水资源研究.E-mail:ychg@mail.iap.ac.cn E-mail:ychg@mail.iap.ac.cn
  • 基金资助:

    国家自然科学基金项目“东亚季度预报中土壤温度影响的定量评估及其初始化研究”(编号40575040);“流域水文过程与农业非点源污染物迁移转化相互作用机理研究”(编号:50679018);中国科学院创新团队国际合作伙伴计划资助.

Review of Coupling Atmospheric and Hydrologic Models

YANG Chuan-guo 1, 2, LIN Zhao-hui 2, HAO Zhen-chun 1, YU Zhong-bo 1, LIU Shao-feng 2   

  1. 1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hehai University, Nanjing 210098,China; 2.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China
  • Received:2005-09-20 Revised:2006-06-12 Online:2007-08-10 Published:2007-08-10

首先阐明大气水文模式耦合的必要性,总结作为二者耦合的共同界面——陆面模式的发展过程。在此基础上,从耦合研究方法和目的出发,分4个类别详细论述当前国内外大气水文模式耦合研究的现状。指出了单向耦合不足和进行双向耦合所面临的几个关键问题包括:尺度问题、次网格分布非均匀性、降水模拟等。未来要求充分利用“3S”、四维变分同化等新技术和新方法,加强多学科的联合研究,深入开展大气水文模式的双向耦合试验和敏感性分析,研究大气—植被—土壤—水文系统的交互影响,从根本上提高大气和水文模式的模拟和预报水平。

Research on coupling atmospheric and hydrologic models has become an important issue in both hydrology and meteorology, and also been emphasized by many international scientific programs. Land surface scheme, which plays a crucial role of interface between atmospheric and hydrologic models, is introduced in the coupling process by many researchers. Based on a summary of land surface schemes, research on coupling atmospheric and hydrologic models is reviewed in detail from four aspects according to the methods and purposes of coupling: (1) forcing hydrologic model by atmospheric model outputs directly, (2) strengthening hydrological descriptions in land surface models, (3) setting up land surface model hydrologic model coupled system, and (4) some two-way coupling researches. The usual one-way coupling has its own drawback since the land-surface process is treated independently, which gives rise to inconsistent state variables between atmospheric and hydrologic models. This problem can be avoided if the two models share a same land surface scheme. Several key aspects in the study of such two-way coupling must be faced, including time-spatial scales difference, sub-grid heterogeneity, precipitation simulation accuracy, etc. Remote sensing, satellites, geological information system and four-dimensional variation data assimilation provide robust methods and techniques to resolve the main problems in coupling process. In the future, developing two-way coupling experiments and sensitivity analysis will be needed to investigate the interactions between atmosphere-vegetation-soil-hydrology processes through interdisciplinary researchers, to realize two-way coupled atmospheric-hydrological model system, and to improve the simulation and prediction both for atmospheric and hydrologic models. Such coupled model system can effectively decrease life and financial loss due to hydrological extreme events or climate abnormity, such as floods and draughts.

中图分类号: 

[1]Tan Ge, Xia Jun, Li Xin. Hydrological prediction in ungauged basins[J].Journal of Glaciology and Geocryology, 2004, 26(2): 192-196.[谈戈,夏军,李新.无资料地区水文预报研究的方法与出路[J].冰川冻土,2004,26(2):192-196.]
[2]Ji Jinjun. A climate-vegetation interaction model: Simulating physical and biological processes at the surface[J]. Journal of Biogeography, 1995, 22: 445-451.
[3]Sun Shufen, Li Jingyang. A sensitivity study of parameterization scheme in snow cover model used in climate research[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(4): 558-576. [孙菽芬,李敬阳.用于气候研究的雪盖模型参数化方案敏感性研究[J].大气科学,2002,26(4): 558-576.]
[4]Chen T, Henderson-Sellers A, Milly P, et al. Cabauw experimental results from the project for intercomparison of land-surface parameterization scheme[J]. Journal of Climate, 1997, 10: 1 194-1 215.
[5]Lohmann D, Lettenmaier D, Liang X, et al. The Project for Intercomparison of land-surface parameterization schemes PILPS phase 2c Red-Arkansas river basin experiment:3. Spatial and temporal analysis of water fluxes[J]. Global and Planetary Change,1998, 19:161-179.
[6]Pietroniro A. A framework for coupling atmospheric and hydrological models[C]//Soil-vegetation-atmosphere Transfer Schemes and Large-scale Hydrological Models. The Netherlands: IAHS Publishing,2001:27-34.
[7]Mölders N, Raabe A. Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather[J].Atmospheric Research,1997, 45: 81-107.
[8]Seuffert G, Gross P, Simmer C, et al. The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model[J].Journal of Hydrometeorology,2002, 3: 505-522.
[9]Miller J, Russell G, Caliri G. Continental-scale river flow in climate models[J].Journal of Climate,1994, 7: 914-928.
[10]Arnell N.The effect of climate change on hydrological regimes in Europe: A continental perspective[J].Global Environmental Change,1999, 9:5-23.
[11]Nijssen B, O'Donnell G, Lettenmaier D, et al. Predicting the discharge of global rivers[J].Journal of Climate,2001,14: 3 307-3 323.
[12]VanRheenen N, Wood W, Palmer N, et al. Potential implications of PCM climate change scenarios for Sacramento-San Joaquin River basin hydrology and water resources[J].Climate Change,2004, 62: 257-281. 
[13]Lu Guihua, Wu Zhiyong, Lei Wen, et al. Advances in land-surface and atmospheric coupling techniques and apply research[C]//The Studies Advances on Science and Technology of Hydrology in China.Nanjing: Hehai University Press, 2004:14-20. [陆桂华,吴志勇,Lei Wen,等.陆气耦合技术应用研究进展[C]//中国水文科学与技术研究进展.南京:河海大学出版社,2004:14-20.]
[14]Evans J. Improving the characteristics of streamflow modeled by regional climate models[J]. Journal of Hydrology,2003, 284: 211-227.
[15]Benoit R, Pellerin P, Kouwen N, et al. Toward the use of coupled atmospheric and hydrological models at regional scale[J].Monthly Weather Review,2000, 128:1 681-1 706.
[16]Jasper K, Gurtz J, Lang H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model[J]. Journal of Hydrology, 2002, 267: 40-52.
[17]Charles A, Lin L, Wen M, et al. A coupled atmospheric- hydrological modeling study of the 1996 Ha! Ha! river basin flash flood in Québec, Canada[J]. Geophysical Research Letters, 2002, 29(2),doi:10:1029/2001GL013827.
[18]Mengelkamp H, Warrach K, Raschke E. SEWAB-a parameterization of the surface energy and water balance for atmospheric and hydrologic models[J]. Advances in Water Resources,1999, 23: 165-175.
[19]Liang X, Xie Z. Important factors in land-atmosphere interactions: Surface runoff generations and interactions between surface and groundwater[J]. Global and Planetary Change,2003, 38: 101-114.
[20]Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model home page[EB/OL].http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html,2006.
[21]Liu Chunzhen, Cheng Bin, Cheng Xingwu, et al. A case study on simulating runoff with bats model[J]. Hydrology,1998,(1):8-13.[刘春蓁,程斌,程兴无,等.用BATS模型模拟径流的个例研究[J].水文,1998,(1):8-13.] 
[22]Su Fengge, Hao Zhenchun. A study of streamflow simulations using a land surface model[J].Climatic and Environmental Research,2002,7(4): 523-531. [苏凤阁,郝振纯.一种陆面过程模式对径流的模拟研究[J].气候与环境研究,2002,7(4): 523-531.]
[23]Benoit R, Pellerin P, Kouwen N, et al. Toward the use of coupled atmospheric and hydrologic models at regional scale[J]. Monthly Weather Review,2000,128:1 681-1 706.
[24]Overgaard J,Butts M, Rosbjerg D. MIKE SHE/ARPS-a fully coupled atmospheric and hydrological modeling system[J]. Geophysical Research Abstracts, 2003, 5, A-08583.
[25]Yu Z, Lakhtakia M, Yarnal B,et al.Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system[J]. Journal of Hydrology,1999, 218: 72-91.
[26]Habets F, Noilhan J, Golaz C, et al. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-mobilhy area Part I: Model and database[J]. Journal of Hydrology,1999, 217: 75-96.
[27]Wang Shourong.Studies on a distributed hydrologic model and simulations nested with regional climate model for Luan and Sanggan river basins[D].Beijing:Institute of Atmospheric Physics, Chinese Academy of Sciences, 2000.[王守荣.滦河、桑干河流域分布式水文模式及其与区域气候模式嵌套模拟研究[D].北京:中国科学院大气物理研究所,2000.]
[28]Zeng Xinmin, Zhao Ming, Su Bingkai, et al. Simulations of a hydrological model as coupled to a regional climate model[J]. Advances in Atmospheric Sciences,2003, 20(2): 227-236.
[29]Liu Chunzhen. The issues in the impact study of climate change on the terrestrial hydrological cycle[J]. Advances in Earth Science,2004, 19(1): 115-119. [刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1): 115-119.]
[30]Mölders N, Raabe A. Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather[J]. Atmospheric Research,1997, 45: 81-107.
[31]Seuffert G, Gross P, Simmer C, et al. The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model[J]. Journal of Hydrometeorology, 2002, 3: 505-522.
[32]Yu Z, Pollard D, Cheng L. On continential-scale hydrologic simulations with a coupled hydrologic model[J]. Journal of Hydrology, 2006, 331: 110-124.
[33]Hostetler S. Hydrologic and atmospheric models: The problem of discordant scales[J]. Climate Change, 1994, 27: 345-350.
[34]Zhang W, Chen J, Ogawa K, et al. Estimation of evapotranspiration in the Urumqi River Basin by means of remote sensing & GIS technique[J]. Hydrological Processes,2005, 19(9): 1 839-1 854.

[1] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[2] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[3] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[4] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[5] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[6] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[7] 周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
[8] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[9] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[10] 张平松, 孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 2017, 32(6): 577-588.
[11] 周天军, 吴波. 年代际气候预测问题:科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341.
[12] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[13] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[14] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[15] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
阅读次数
全文


摘要