地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 754 -760. doi: 10.11867/j.issn.1001-8166.2004.05.0754

研究论文 上一篇    下一篇

用GMS-5对东亚地区对流层高层水汽的研究
黄毅;毛节泰;王美华   
  1. 北京大学大气科学系,北京 100871
  • 收稿日期:2003-10-16 修回日期:2004-03-02 出版日期:2004-12-20
  • 通讯作者: 黄毅(1979-),男,江西省赣州市人,硕士研究生,主要从事大气物理与大气环境的研究. E-mail:E-mail: pku_huangyi@etang.com
  • 基金资助:

    国家自然科学基金项目“中国地区对流层上部水汽分布的研究”(编号:40075002)资助

RESEARCH ON THE UPPER TROPOSPHERE WATER VAPOR OVER EAST ASIA WITH THE GMS-5

HUANG Yi,MAO Jie-tai,WANG Mei-hua   

  1. Atmospheric Science Department, Peking University,Beijing 100871,China
  • Received:2003-10-16 Revised:2004-03-02 Online:2004-12-20 Published:2004-10-01

大气中的水汽是气候变化中至关重要的影响因子,对流层高层的水汽对地气系统的辐射能量平衡尤为重要。卫星观测极大地弥补了常规探空手段对高空低温低湿条件下的水汽探测能力的不足。6.7μm水汽通道是被广泛用于大气水汽反演的卫星通道之一,Soden等(1993)提出一个用该通道亮温反演对流层高层水汽的方法。将这一方法应用于日本GMS-5静止卫星的水汽云图,得到东亚地区中无云区域与水汽云图具有相同时空分辨率的对流层高层水汽分布。反演得到的月平均对流层高层平均相对湿度与NCEP分析资料给出的平均相对湿度具有较好的一致性。根据 1996-2002年的GMS5水汽通道亮温资料得到东亚地区对流层高层水汽的典型时、空分布形式。随卫星观测记录的延续,反演得到的长时间序列的对流层高层相对湿度资料将为水循环的研究和水汽对气候变化响应和反馈的研究提供有力依据。

Water vapor is a key factor of the climate change. The water vapor in upper troposphere is more important to global radiative balance. Satellite remote sensing provides a useful way to retrieve the upper troposphere water vapor at the low temperature. One of the most widely used channels to retrieval the water vapor is the 6.7 μm channel.Soden (1993) suggested a scheme by using this channel to obtain upper troposphere relative humidity. In this paper, we apply this method to the water vapor channel data provided by the GMS-5, and get the distribution of the clear sky upper troposphere water vapor over East   Asia. A month-average distribution is confirming by the relative humidity distribution given by the NCEP data. Based on the GMS-5 data of 1996-2002, we get an average distribution of the upper troposphere water vapor over East   Asia. This product is an aid ant data set for the research on water cycle and the responding of the atmospheric water vapor to climate change.

中图分类号: 

[1]Manabe S, Wetherald R T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of Atmospheric Science, 1976, 24:241-259.
[2]Soden B, Wetherald R T, Stenchikov G L,et al. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor[J]. Science, 2002, 296(5 568): 727-730.
[3]Held I, Soden B. Water vapor feedback and global warming[J]. Annual Review of Energy Environment, 2000, 25: 441-475.
[4]Fasullo J, Sun D Z . Radiative sensitivity to water vapor under all-sky conditions [J].Journal of Climate, 2001, 14(12): 2 798-3 007.
[5]Schneider E. Tropospheric water vapor and climate sensitivity[J]. Journal of the Atmospheric Sciences,1999, 56(11): 1 649-1 658.
[6]Zhang Aichen(张霭琛).Humidity measurement[A].In: Modern Meteorological Observation[C].Beijing:Peking University Press,2000(in Chinese).
[7]Elliott P, Gaffen J. On the utility of radiosonde humidity archives for climate studies[J].Bulletin America Meteorology Society, 1991, 72: 1 507-1 520.
[8]Zhu Yuanjing(朱元竞),Li Wanbiao(李万彪),Chen Yong(陈勇).Study of total precipitable water by GMS-5[J].Quarterly Journal of Applied Meteorology(应用气象学报),1998, 9(1):8-14(in Chinese).
[9]Xu Jianmin(许建民), Zheng Xinjiang(郑新江),Xu Huan(徐欢),et al.Upper tropospheric nwisture distribution over the Tibetan Plateau as revealed from GMS-S water Vapor images[J].Quarterlg Journal of Applied Meteordogy(应用气象学报),1996, 7(2):246-25(in Chinese).
[10]Soden B J, Bretherton F P. Upper tropospheric relative humidity from the GOES 6.7μm channel: Method and climatology for July 1987[J].Journal Geophysic Research,1993, 98:16 669-16 688.
[11]Huang Y, Wang M, Mao J. Retrieval of upper tropospheric relative humidity by GMS-5 water vapor channel: Study of the technique[J]. Advances in Atmospheric Sciences, 2004,21:53-60.
[12]Mao Jietai(毛节泰), Wang Meihua(王美华),Mao Yali(毛亚莉), et al. Astronomicniqht dear sky probability distibation over China[J].Chinese Journal of Astronorny & Astrophysics(天体物理学报),1999, 19:432-446(in Chinese).
[13]Udelhofen, Hartmann. Influence of tropical cloud system on the upper troposphere[J].Journal Geophysic Research, 1995,100:7 423-7 440.

[1] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[2] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[3] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[4] 于宗仁, 王彦武, 王小伟, 赵林毅, 郭青林, 王旭东. 壁画盐害水汽来源研究——以隆兴寺为例[J]. 地球科学进展, 2017, 32(6): 668-676.
[5] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[6] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[7] 刘旸,蔡波,班显秀,袁健,耿树江,赵姝慧,李帅彬. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.
[8] 徐兴奎. 1970—2000年中国近地层大气热力增强的气候效应[J]. 地球科学进展, 2011, 26(1): 48-56.
[9] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
[10] 刘忠方,田立德,姚檀栋,巩同梁,尹常亮. 水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J]. 地球科学进展, 2007, 22(8): 842-850.
[11] 王宝鉴,黄玉霞,王劲松,陶健红. 祁连山云和空中水汽资源的季节分布与演变[J]. 地球科学进展, 2006, 21(9): 948-955.
[12] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
[13] 王小亚,朱文耀,严豪健,丁金才. 地面GPS探测大气的最新进展[J]. 地球科学进展, 1997, 12(6): 519-527.
[14] 杨逸畴,高登义,李渤生. 世界最大峡谷的地理发现和研究进展——雅鲁藏布江大峡谷的考察和探险成果[J]. 地球科学进展, 1995, 10(3): 299-303.
[15] 顾宏堪. 水汽化学[J]. 地球科学进展, 1991, 6(1): 57-59.
阅读次数
全文


摘要