地球科学进展 ›› 2004, Vol. 19 ›› Issue (4): 539 -544. doi: 10.11867/j.issn.1001-8166.2004.04.0539

所属专题: IODP研究

IODP研究 上一篇    下一篇

南海渐新世以来构造演化的沉积记录——ODP 1148站深海沉积物中的证据
邵 磊 1;李献华 2;汪品先 1;翦知湣 1;韦刚健 2;庞 雄 3;刘 颖 2   
  1. 同济大学海洋地质教育部重点实验室,上海 200092; 2中国科学院广州地球化学研究所,广东 广州 510640;3中海石油研究中心南海东部研究院,广东 广州 510240
  • 收稿日期:2004-05-20 修回日期:2004-06-14 出版日期:2004-08-01
  • 通讯作者: 邵磊(1960-),男,河南巩县人,教授,主要从事沉积学及盆地分析研究. E-mail:E-mail: lshaok@online.sh.cn
  • 基金资助:

    国家自然科学基金重大项目“东亚古季风的海洋记录”(编号:49999560);国家自然科学基金重点项目“南海深水扇系统及油气资源”(编号:40238060);国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:2000078500)资助

SEDIMENTARY RECORD OF THE TECTONIC EVOLUTION OF THE SOUTH CHINA SEA SINCE THE OLIGOCENE—Evidence from deep sea sediments of ODP Site 1148

SHAO Lei 1;LI Xian-hua 2;WANG Pin-xian 1;JIAN Zhi-min 1;WEI Gang-jian 2; PANG Xiong 3; LIU Yin 2   

  1. 1.Key Laboratory of Marine Geology, Ministry of Education, Tongji University, Shanghai 200092, China;2.Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; 3.Nanhai East Institute, CNOOC Research Center, Guangzhou 510240, China
  • Received:2004-05-20 Revised:2004-06-14 Online:2004-08-01 Published:2004-08-01

南海ODP 1148站井深859 m、时间跨度32.8 Ma,是南海大洋钻探中取芯最长、年代最老的站位,详细记录了渐新世以来南海北部的演变历史。该站位深海沉积物地球化学分析结果显示,自早渐新世以来南海经历了复杂的沉积、构造演变过程。在32 Ma、30 Ma、28.5 Ma、25 Ma、23.5 Ma 和16 Ma以及10 Ma、8 Ma和3 Ma沉积物成分存在明显的突变或不连续面。特别是在晚渐新世沉积物成分发生剧烈改变,并伴有沉积间断和滑塌作用,代表着南海以及我国东部地区一次重大构造运动,该构造运动对我国近代地理格局的形成以及我国东部地区众多陆相盆地由断陷型转为坳陷型起到了极为关键的作用。

ODP Leg 184 Site 1148 recovered up to 859 m deepsea sediments spanning the fast 32.8 Ma from the northern South China Sea (SCS), which is the longest record known so far in recording the detail evolutionary history of the SCS since the Oligocene. Geochemical analysis reveal that the SCS has undergone complicated sedimentary and tectonic evolutionary processes. The composition of the sediments had obvious changes or discontinuities at 32 Ma, 30 Ma, 28.5 Ma, 25 Ma, 23.5 Ma, 16 Ma, 10 Ma, 8 Ma and 3 Ma, respectively, reflecting tectonic or environmental turning points. Especially, the great discontinuous change in the sediment composition at the Oligocene/Miocene boundary with slumps and sedimentation breaks indicates a period of important tectonic activities in the SCS and Eastern China areas. This tectonic event played a key role in the transforming of many sediments basins in the Eastern China from graben basins to downwarped basins, as well as in the formation of the general topographic character in the region.

中图分类号: 

[1]Liu Zhaoshu(刘昭蜀),Zhao Huanting(赵焕庭),Fan Shiqing(范时清), et al. Geology of the South China Sea[M]. Beijing:Science Press,2002. 494-501(in Chinese).
[2]BenAvraham E, Vyeda S. The evolution of the China Basin and the Mesozoic Paleogeography of Borneo[J]. Earth and Planetary Science Letters, 1973, 18(1~4): 365-376.
[3]Taylor B, Hayes D E. The tectonic evolution of the South China Basin. In: Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2[M]. Washington:Geophysical Monograph 27, AGU, 1983, 23-56.
[4]Yao Bochu(姚伯初). Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology(海洋地质与第四纪地质),1996, 16(2): 1-13( in Chinese ).
[5]Yao Boshu(姚伯初), Zeng Weijun(曾维军), Hayes D, et al.The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M].Beijing: China University of Geosciences Press,1994.1-204( in Chinese ).
[6]Feng Zhiqiang(冯志强), Zeng Weijun(曾维军). Tectonic evolution of Pearl River Mouth Basin and the formation of the South China Sea[J]. Acta Geologica Sinica(地质学报), 1982,56(3):212-222( in Chinese ).
[7]Zhang Wenyou(张文佑). Tectonics of China and Adjacent Areas[M]. Beijing: Science Press,1986, 344-356( in Chinese ).
[8]Berggren W A, Kent D V, Swisher III C C, et al. A revised Cenozoic geochronology and chronostratigraphy[A]. In: Berggren W A, et al. eds. Geochronology, Time Scales and Global Stratigraphic Correlation[C]. SEPM Special Publication 54, 1995.129-212.
[9]Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6 299-6 328.
[10]Wang P X, Prell W L, Blum P, et al.Proceedings of the Ocean Drlling Program, Initial Reports South China Sea, Volume 184, College Station TX (Ocean Drilling Program)[M]. 2000,25-38.[JP]
[11]Liu Ying(刘颖),Liu Haichen(刘海臣),Li Xianhua(李献华). Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J]. Geochimica(地球化学),1996,25(6): 552-558( in Chinese ).
[12]Li Xianhua(李献华), Liu Ying(刘颖), Tu Xianglin(涂湘林), et al. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution[J].Geochimica(地球化学),2002, 31(3): 289-294( in Chinese ).
[13]Li Q, Jian Z, Su X, et al. Late Oligocene rapid transformations in the South China Sea[J]. Marine Micropaleontology, 2004(in press).
[14]Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Longman Scientific, Technical, 1993. 1-352.
[15]McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[A]. In: Lipin B R,et al. ed. Geochemistry and Mineralogy of Rare Earth Elements[C]. Washington DC: The Mineralogical Society of America,1989, 169-200.
[16]Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford London: Blackwell Scientific Publication, 1985. 1-301.
[17]Zhao Q. Late Cainozoic ostracod faunas and paleoenvironmental changes at ODP site 1148, South China Sea[J]. Marine Micropaleontology,2004(in press).
[18]Li X, Wei G, Shao L. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters,2003,211(3~4): 207-220.
[19]Fang Dianyong(房殿勇),Wang Rujian(王汝建),Shao Lei(邵磊), et al. Silica diagenesis of deep-sea Oligocene at ODP site 1148, the South China Sea[J]. Marine geology & quaternary geology(海洋地质与第四纪地质),2002,22(2): 75-79( in Chinese ).
[20]Wang Rujian,Fang Dianyong,Shao Lei, et al. Oligocene biogenic siliceous deposits on the slope of the northern South China Sea[J]. Science in China(Series D),2001, 44(10): 912-918.
[21]Gong Zaisheng(龚再升),Li Sitian(李思田). Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea[M]. Beijing: Science Press,1997.127-192( in Chinese ).
[22]Zhu Weilin(朱伟林), Li Mingbi(黎明碧). Sequence Stratigraphy of Zhu3 Sag, Pearl River Mouth Basin[M]. Beijing: Petroleum University Press,1995.143-146( in Chinese ).
[23]Tang Song(唐松),Shao Lei(邵磊),Zhao Quanhong(赵泉鸿). Characteristics of clay mineral in South China Sea since Oligocene and its significance[J].Acta Sedimentologica Sinica(沉积学报),2004,22(2):337-342( in Chinese ).
[24]Jolivet L, Huchon P, Rangin C. Tectonic setting of western Pacific marginal basins[J].Tectonophysics, 1989,160(1): 23-47.
[25]Peng T H, Li Y H, Wu F T. Tectonic Uplift Rates of the Taiwan Island Since the Early Holocene[J]. Memoir of the Geological Society of China, 1977, 2: 57-69.
[26]Chemenda A I, Yang R K, Hsieh C H, et al. Evolutionary model for the Taiwan collision based on physical modelling[J]. Tectonophysics, 1997, 274(1~3): 253-274.
[27]Shao Lei, Li Xianhua, Wei Gangjian. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D),2001, 44(10): 919-925.
[28]Yu H S. Structure, stratigraphy and basin subsidence of Tertiary basins along the Chinese southeastern continental margin[J].Tectonophysics,1994,235(1~2):63-67.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[5] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[6] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[7] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[8] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[9] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[10] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[11] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[12] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[13] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[14] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[15] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
阅读次数
全文


摘要