地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 753 -758. doi: 10.11867/j.issn.1001-8166.2003.05.0753

研究论文 上一篇    下一篇

科学大洋钻探与天然气水合物
吴能友,陈弘,蔡秋蓉,王宏斌   
  1. 国土资源部广州海洋地质调查局,广东 广州 510075
  • 收稿日期:2003-05-23 修回日期:2003-07-27 出版日期:2003-12-20
  • 通讯作者: 吴能友 E-mail:nengyouwu@163.net
  • 基金资助:

    国家863计划项目“天然气水合物探测技术”课题(编号:2001AA611020);国家重点基础研究发展规划项目“暖池形成演变的构造控制与沉积证据”课题(编号:G2000078501)资助.

SCIENTIFIC OCEAN DRILLING AND GAS-HYDRATES

Wu Nengyou, Chen Hong, Cai Qiurong, Wang Hongbin   

  1. Guangzhou Marine Geological Survey Bureau, MLR, Guangzhou 510075, China
  • Received:2003-05-23 Revised:2003-07-27 Online:2003-12-20 Published:2003-10-01

天然气水合物是由水和甲烷等气体水分子组成的冰状物,主要分布于海洋陆坡区和陆地永久冻土带,是21世纪理想的替代能源。科学家已对天然气水合物的物理化学性质、产出条件、分布规律、勘查技术、开采工艺、经济评价及开采可能造成的环境影响等进行了广泛而深入的研究。大洋钻探计划(ODP)是获得深部含天然气水合物和游离气沉积物的唯一途径,已成功实施了164和 204两个以天然气水合物为主要目标的航次,分析研究了含天然气水合物沉积物的原位物理化学特性和地球物理性质,探讨了气体-水-沉积物-水合物间的相互作用机理,为气体储量计算提供了依据,对推动水合物研究作出了重大贡献。综合大洋钻探计划(IODP)的启动,将为人们深刻理解地球历史和地球系统过程(ESP),特别是认识天然气水合物在地质过程中的作用,提供前所未有的机会。

Gas hydrates are solid compounds similar to ice crystals where cages of water molecules enclose molecules of natural gas mostly being methane a well as ethane, propane, etc. It has long been known that the natural gas hydrates occur globally in sediments mainly in the continental slope and in permafrost regions of the continent. Over the past years, geoscientists had acquired a lot of information about the physical and chemical characteristics, geological conditions of formation and concentration, distribution of the gas hydrate, the technology and methold of explorating and exploitating, as well as the potentially influence on environment. Scientific ocean drilling provided the only avenue for us to gain sample of gas-hydrate and bearing-gas-hydrate sediments and free gas from deep setting, especially Leg164 and Leg204 of Ocean Drilling Program (ODP). By studying the data from ODP, geoscientists had analyzed in situ property of bearing-gas-hydrate sediments, discussed reacting mechanism among gas, water, sediment and gas-hydrate. The Integrated Ocean Drilling Program (IODP) will provide a new opportunity for us to research the Earth's history and the System's Processing (ESP), and will reveal the importance of gas-hydrate in the process.

中图分类号: 

[1] Kvenvolden K A. A review of geochemistry of methane in nature gas hydrate[J]. Organic Geochemistry, 1995, 23(11/12):997-1 008.

[2] Collett T S. Natural gas hydrates of the Prudhoe Bay and Kupruk River area, North Slope, Alask[J].  American Association of Petroleum Geologists Bulletin, 1993 ,77(5):793-812.

[3] Yamazaki Akira. MITI's plan of research and development for technology of methane hydrate development as domestic gas resources[Z]. Copenhagen. 20th World Gas Conference,1997.

[4] Anon. Gas hydrates to boost India's gas resource[J]. Oil and Gas Journal, 1997,95(37): 28. 

[5] Alexei V, Milkov, Roger Sassen. Economic geology of offshore gas hydrate accumulations and provinces[J].  Marine and Petroleum Geology, 2002, 19:1-11.

[6] Lee M W. Gas hydrate amount estimated from acoustic logs at the Blake Ridge, Sites 994, 995, and 997. Proceedings of the Ocean Drilling Program, Scientific results, 164[R]. College Station, Texas, Ocean Drilling Program, 2000.193-198. 

[7] Hovland M, Gardner J V, Judd A. The significance of pockmarks to understanding fluid flow processes and geohazards[J]. Geofluids, 2002, 2:127-136.

[8] Shi Dou, Sun Chengquan, Zhu Yuenian, eds. International Progress on Gas Hydrate Research [C]. Lanzhou: Lanzhou University Press, 1992.[史斗,孙成权,朱岳年,主编.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992. ]

[9] Suess E. The evolution of an idea: From avoiding gas hydrates to actively drilling for them [A]. In: Achievements and Opportunities of Scientific Ocean Drilling[C]. 2002.45-50. 

[10] Integrating Marine Science in European, European Science Foundation[Z]. ESF Marine Board, 2002.46-47.

[11] MacDonald I R, Leifer I, Sassen R, et al. Transfer of hydrocarbons from natural seeps to the water column and atmosphere[J]. Geofluids, 2002, 2:95-107.

[12] Judd A, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids, 2002, 2:109-126.

[13] Kvenvolden K A, McDonald T J. Gas Hydrates of the Middle America Trench, Deep Sea Drilling ProJect Leg 84, Initial Reports[R]. Deep Sea Drilling ProJect, 1985.667-682. 

[14] Shipboard Scientific Party, Site 1041: Proceedings, Initial Reports of Leg170[R]. Ocean Drilling Program, 1997.153-188.

[15] Harrison W E, Curiale J A. Gas Hydrates in Sediments of Holes 497 and 498A, Deep Sea Drilling ProJect leg 67: Initial Reports[R]. Deep Sea Drilling ProJect, 1982.591-594.

[16] Shipley T H, Didyk B M. Occurrence of Methane Hydrates Offshore Southern Mexico: Initial Reports, Deep Sea Drilling ProJect, v. 66[R]. 1982. 547-555.

[17] Whiticar M J, Hovland M, Kastner M, et al. Organic Geochemistry of Gases, Fluids, and Hydrates at the Cascadia Accretionary margin[R]. Ocean Drilling Program, Scientific Results of Leg146, 1997. 385-397.

[18] Ganguly N, Spence G D, Chapman N R, et al. Heat flow variations from bottom simulating reflectors on the Cascadia margin[J]. Marine Geology, 2000, 164: 53-68.

[19] Shipboard Scientific Party, Site 796, Proceedings of Ocean Drill Program, Initial Reports 127[R]. 1990.247-322.

[20] Shipboard Scientific Party, Site 808 Proceedings of Ocean Drill Program, Initial Reports 131[R]. 1991.71-269. [21] Kvenvolden K A, Kastner M. Gas hydrates of the Peruvian outer continental margin, Proceedings of Ocean Drill Program[R]. Scientific Results, 112, 1990. 517-526.

[22] MacDonald I R, Guinasso N J, Sassen R, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico[J]. Geology, 1994,22: 699-702. 

[23] Kvenvolden K A, Barnard L A. Gas Hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76, Initial Reports[R]. Deep Sea Drilling ProJect, 1983. 353-365.

[24] Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of Leg164 Initial Reports [R]. Ocean Drill Program, 1996.623.

[25] Gerhard Bohrmann, Anne Trehu, Jack Baldauf, et al. Leg 204 Preliminary Report[R]. Ocean Drill Program, 2002.7-46.

[26] Integrated Ocean Drilling Program. Earth, Oceans and Life[R]. Integrated Ocean Drill Program, 2001.29-35.

[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[3] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[4] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[5] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[6] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[7] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[8] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[9] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[10] 刘志飞,拓守廷. IODP计划的新进展[J]. 地球科学进展, 2009, 24(12): 1318-1324.
[11] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[12] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[13] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[14] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[15] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520.
阅读次数
全文


摘要