地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 769 -775. doi: 10.11867/j.issn.1001-8166.2002.05.0769

新学科·新技术·新发现 上一篇    下一篇

数字地形分析技术在分布式水文建模中的应用
李硕,曾志远,张运生   
  1. 南京师范大学地理科学学院,江苏 南京 210097
  • 收稿日期:2001-07-10 修回日期:2001-12-01 出版日期:2002-12-20
  • 通讯作者: 李硕(1967-),男,安徽蚌埠人,助研,主要从事遥感、GIS、地理过程计算机模拟的研究与应用工作.E-mail:shuoli@263.net E-mail:shuoli@263.net
  • 基金资助:

    国家自然科学基金项目“流域土壤、水资源模拟模型的集成及系统化及应用研究”(编号:40071043)资助.

APPLICATION OF DIGITAL TERRAIN ANALYSIS TECHNOLOGY FOR DISTRIBUTED HYDROLOGICAL MODELLING

LI Shuo, ZENG Zhi-yuan, ZHANG Yun-sheng   

  1. Geography Department of Nanjing Normal University, Nanjing 210097 China
  • Received:2001-07-10 Revised:2001-12-01 Online:2002-12-20 Published:2002-10-01

论述了在栅格数字高程模型(DEM)的基础上,利用数字地形分析技术来完成地形评价、河网指示、流域分割、子流域参数化等项工作的理论与方法。并结合江西潋水河流域的实际工作进行了详细的说明。研究结果表明,通过数字地形分析的方法,利用栅格DEM实现流域离散化并从中提取分布式水文模型所需要的输入参数是一种行之有效的手段。

Topography is important to the description, quantification and interpretation of many biosphere processes.  Examples of such processes in the field of hydrology include: surface runoff and water storage, energy fluxes, evapo-transpiration, soil erosion and snow metamorphosis.  Extracting topographic information for a watershed by traditional, manual techniques can be a tedious, time consuming, subjective, and error-prone task, particularly for large watersheds.
    Research over the past decades has demonstrated the feasibility of extracting topographic information directly from raster Digital elevation models (DEM) through digital terrain analysis technologies. In the field of distributed hydrological modelling, automated evaluation of DEMs has focused on watershed segmentation, definition of drainage divides and identification of the drainage networks. This automated extraction of network and subwatershed properties from DEMs represents a convenient and rapid way to parameterize a watershed. This techniques also have the advantage of generating digital data that can be readily managed and analyzed by Geographic Information Systems (GIS) ,and the extracted topographic features also can be directly input for hydrological models.
Based on our research work of NSFC Program “Integration and Systematization of Mathematic Models for Soil and Water Resource Study in a Basin and Its Application”, the paper analyzed the methods of the digital terrain analysis technologies to watershed distributed hydrological modeling. A raster digital elevation models of Lianshui Basin is used to define surface drainage, extract the drainage networks, subdivide the whole watershed into 79 subbasins, and calculate representative subbasin parameters. The D8 and burn-in methods are mainly introduced. The result show that the drainage network and subbasins extracted from DEM are acceptable as compared with that of manual digitizations from 1∶100000 topography map. All these research  works provide a solid foundation for further development of distributed hydrological modeling.

中图分类号: 

[1]Wischmeier W M,Smith D D. Predicting rainfall erosion losses-A guide to conservation planning[A].  Technical Report Agriculture Handbook No.537, Science and Education Administration[C]. USDA,1978.
[2]Young R A, Onstad C A, Bosch D D. AGNPS, Agriculture Non-point Source Pollution Model: A watershed analysis tool[A]. In: USDA, Agriculture Research Service, Conservation Research Report 35[C].Morris,MN, USA,1987.
[3]Beasely D B,Huggins L F, Monke E J. ANSWERS: A model for watershed planning[J].Transactions of ASAE, 1980,23(4):938-944.
[4]Neitsch S L, Aronld J G, Williams J R. Soil and Water Assessment Tool User's Manual 99.2[Z].808 East  Blackland Rd ,Temple,Texas-76502:USDA, Agriculture Research Service and Grassland Soil and Water Research Laboratory, 1999.
[5]Steyaret L T. A perspective on the state of environmental simulation modeling[A]. In: Goodchild M F, Parks B O, Steyaert L T, eds. Environmental Modeling with  GIS[C]. New York: Oxford University Press, 1993. 16-30.
[6]Srinivasan R, Arnold J G. Integration of a basin scale water quality model with GIS[J]. Water Resources Bulletin, 1994,30(3):453-462.
[7]Rewert C C, Engel B A. ANSWERS on GRASS: Integrating a watershed simulation with GIS[Z]. American Society of Agriculture Engineers, Number ASAE Paper No. 91-2621,1991.
[8]Engel B A,  Srinivasan R, Rewert C C. Aspatial decision support system for modeling and managing  agricultural nonpoint source pollution[A]. In: Goodchild M F, Parks B O, Steyaert L T, eds. Environmental Modeling with  GIS[C]. New York: Oxford University Press, 1993. 231-237.
[9]Neitsch S L, DiLuzio M. ArcView Interface for SWAT 99.2-User's Guide[Z]. 808 East  Blackland Rd ,Temple,Texas-76502:USDA, Agriculture Research Service and Grassland Soil and Water Research Laboratory.1999.
[10]Maidment David R. GIS and hydrologic modeling-An assessment of progress[A].  In: Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling[C]. Santa Fe, NM, January 21-26, 1996. 
[11]Francisco Olivera, David R M. Storm Runoff Computer Using Spatial Distributed Terrain Parameters[DB/OL].1998.
[12]Moore I D, Turner A K, Wilson J P,et al. GIS and Land-Surface-Subsurface Process Modeling[A]. In: Goodchild M F, Parks B O, Steyaert L T, eds. Environmental Modeling with  GIS[C]. New York: Oxford University Press, 1993. 196-230.
[13]Lu Guonian, Qian Yadong, Chen Zhongming. Automated extraction of the characteristics of topography from Grid Digital Elevation Data[J]. Acta Geographica Sinica, 1998,53(6):562-569.[闾国年,钱亚东,陈钟明. 基于栅格数字高程模型提取特征地貌技术研究[J]. 地理学报,1998,53(6):562-569.]
[14]O'Callaghan J F,  Mark D M. The extraction of drainage network from from digital elevation data[J].Computer Vision, Graphics and Image Processing, 1984, 28:323-344.
[15]Jensen S K, Domingue J O. Extracting topographic structure from digital elevation data for geographic information system analysis[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11):1 593-1 600.
[16]Martz L W, De Jong E. Catch: A FORTRAN program for measuring catchment area from digital elevation models[J]. Computers & Geosciences, 1988, 14(5):627-640.
[17]Garbrecht J, Martz L W. The assignment of drainage direction over flat surfaces in raster digital elevation models[J]. Journal of Hydrology, 1997, 193:204-213.
[18]Jensen S K. Application of hydrology information automatically extracted from digital elevation models[J].Hydrological Processes, 1991, 5(1):31-44.
[19]Lu Guonian, Qian Yadong, Chen Zhongming. Study of automated topography partition of watersheds[J].Journal of Remote Sensing. 1998, 2(4):298-304.[闾国年,钱亚东,陈钟明. 流域地形自动分割研究[J]. 遥感学报,1998,2(4):298-304.]
[20]Daya sagar B S, Venu M, Srinivas D. Morphological operators to extract channel network from digital elevation models[J]. International Journal of Remote Sensing, 2000, 21(1):21-29.
[21]Francisco Olivera, Seann Reed, David Maidment. HEC-PrePro v. 2.0: An ArcView Pre-Processor for HEC's Hydrologic Modeling System[Z]. ESRI User Conference Proceedings 1998[DB/OL], 1998.
[22]Garbrecht J, Martz L W. Topaz Overview[M]. USDA-ARS, Grazingland Research Laboratory ,7207 West Cheyenne St, El  Reno, Oklahoma, 73036,1999.
[23]Office of Soil Investigation in Xingguo County. Xingguo Soil[M]. 1983.1-6.[兴国土壤普查办公室.兴国县土壤[M]. 1983. 1-6.]
[24]Maidment D R. Developing a spatial distributed unit hydrography by using GIS[A].In Kovar K, Nachtnebel H P, eds. Application of Geographic Information System in Hydrology and Water Resource Managenment[C]. International Association of Hydrological Sciences,Wallingford,1993.
[25]William K.Saunders and Maidment. David R. A GIS Assessment of Nonpoint Source Pollution in the San Antonio - Nueces Coastal Basin[R/OL]. Center for Research in Water Resources, The University of  Texas at Austin. 1996.

[1] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[2] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[3] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[4] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[5] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[6] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[7] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[8] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[9] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[10] 沈巍, 许清海, 李建勇, 李曼玥, 张攀攀, 卢静瑶. 山区小流域花粉植被土地利用的关系:定量检测人类活动对环境的影响[J]. 地球科学进展, 2017, 32(9): 972-982.
[11] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[12] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[13] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[14] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[15] 胡凯, 方小敏, 赵志军. 宇宙成因核素 10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
阅读次数
全文


摘要