地球科学进展 ›› 2002, Vol. 17 ›› Issue (2): 254 -261. doi: 10.11867/j.issn.1001-8166.2002.02.0254

中国典型地区土地利用变化对生态系统的影响机制 上一篇    下一篇

气候变化对中国北方荒漠草原植被的影响
李晓兵,陈云浩,张云霞,范一大,周涛,谢锋   
  1. 北京师范大学中国生态资产评估研究中心,北京师范大学资源科学研究所,北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875
  • 收稿日期:2001-12-07 修回日期:2001-12-28 出版日期:2002-12-20
  • 通讯作者: 李晓兵(1967-),男,副教授,主要从事全球变化与陆地生态系统、生态环境遥感研究.E-mail:xbli@irs.bnu.edu.cn E-mail:xbli@irs.bnu.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“我国生存环境演变和北方干旱化趋势预测研究”(编号:G1999043404)和“草地与农牧交错带生态系统重建机理及优化生态—生产范式”(编号:G2000018604);国家自然科学基金项目“基于‘3S’检测我国北方气候变化对植被的影响”(编号:30000027)资助.

IMPACT OF CLIMATE CHANGE ON DESERT STEPPE IN NORTHERN CHINA

LI Xiao-bing,  CHEN Yun-hao, ZHANG Yun-xia, FAN Yi-da, ZHOU Tao, XIE Feng   

  1. China Ecological Capital Assessment Research Center, Institute of Resources Science, Beijing Normal  University, Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education of China, Beijing  100875,China
  • Received:2001-12-07 Revised:2001-12-28 Online:2002-12-20 Published:2002-04-01

气候变化对陆地生态系统的影响及其反馈是全球变化研究的焦点之一。利用气候变量实现对遥感植被指数所表示的植被绿度信息的模拟,可以尝试作为表达生物圈过去和未来状态的一种途径。利用1961-2000年的气温、降水和1983-1999年的NOAA/AVHRR资料,分析了中国北方地带性植被类型荒漠草原植被分布区的短尺度气候的年际和季节变化,及其对植被的影响。结果表明,过去40年中该区域年际气候变化表现为增温和降水波动。年NDVI的最大值(NDVImax)可以较好地反映气候的变化,过去17年中NDVImax出现的时间略有提前。综合分析NDVI、植被盖度、NPP、区域蒸散量、土壤含水量及其气候的年际变化,表明增温加剧了土壤干旱化,降水和土壤含水量仍是制约本区植被生长的根本原因。

One of focus of global change research is the impact of climate change on terrestrial ecosystem. It is an approach to research on global change to predict vegetation green-up information showed by NDVI using climate variations, because the relationship between NDVI and climate variations can be used to predict past and future status on earth. In this study, impact of short term seasonal and inter-annual climate change on zonal desert steppe vegetation in northern China were addressed, by using air temperature and precipitation data from 1961 to 2000 and NOAA/AVHRR NDVI data from 1983 to 1999. The results shown, climate change presented increasing temperature and fluctuant precipitation in the past 40 years,in this region. Annual NDVImax could reflect preferably climate change, and it’s outset moved up in past 17 years. Analysis, integrating NDVI, fractional cover, NPP, regional evapotranspiration, soil water content and climate variables, shown that increasing temperature has aggravated soil drought, and precipitation and soil water content was also essential reason to vegetation growth.

中图分类号: 

[1] Life Sciences Department of National Natural Science Foundation of China, Literature and Information Center in Shanghai of Chinese Academy of Sciences. Global change and terrestrial ecosystem-one of IG BP core projects [A]. In: Life Sciences Department of National Natural Science Foundation of China, Literature and Information Center in Shanghai of Chinese Academy of Sciences, ed. Global Change and Ecosystem[C]. Shanghai: Shanghai Science and Technology Press, 1994.62-95. [中国国家自然科学基金委员会生命科学部,中国科学院上海文献情报中心.全球变化与陆地生态系统——IGBP的核心计划之一 [A].见:中国国家自然科学基金委员会生命科学部,中国科学院上海文献情报中心编. 全球变化与生态系统[C].上海:上海科学技术出版社,1994.62-95.]
[2] GCTE. A Concise Guide[M]. 1998.
[3] Townshend J R G. Global data sets for land applications from the Advance Very High Resolution Radiometer: an introduction [J]. International Journal of Remote Sensing, 1994, 15(17): 3 319-3 332.
[4] James M E, Kalluri S N V. The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring [J]. International Journal of Remote Sensing, 1994, 15(17): 3 347-3 363.
[5] Yang Limin, Zhu Zhiliang. Progress of research on land use and land cover at global and regional scale by using remote sensing [J]. Journal of Natural Resource, 1999, 14(4): 340-344. [杨立民, 朱智良. 全球及区域尺度土地覆盖土地利用遥感研究的现状和展望 [J]. 自然资源学报, 1999, 14(4): 340-344.]
[6] Townshend J, Justice C. Global land cover classification remote sensing: present capabilities and future possibilities [J]. Remote Sensing of Environment, 1991, 35: 243-255.
[7] Defries R S, Townshond J R G. NDVI-derived land cover classification at a global scale [J]. International Journal of Remote Sensing, 1994, 15(17): 3 567-3 586.
[8] Justice C O, Hoben B N, Gwynne M D. Monitoring East African vegetation using AVHRR data [J]. International Journal of Remote Sensing, 1986, 7: 1 453-1 474.
[9] Turker C J, Townshend J R G, Goff T E. African land-cover classification sing satellite data [J]. Science, 1985a, 227: 369-375.
[10] Curran P J. Multispectral remote sensing of vegetation amount [J]. Progress in physical geography, 1980, 4: 319-341.
[11] Tucker C J, Vanpraet C, Boerwinkel E, et al. Satellite remote sensing of total dry matter production in the Senegalese Sahel [J]. Remote Sensing of Environment, 1983, 13: 461-474.
[12] Tucker C J, Vanpraet C L, Sharman M J, et al.Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984[J]. Remote Sensing of Environment, 1985, 17: 233-249.
[13] Sellers P J. Canopy reflectance, photosynthesis, and transpiration [J]. International Journal of Remote Sensing, 1985, 6: 3 319-3 332.
[14] Asrar G, Fuchs M, Kanemase E T, et al. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat [J]. Agronomy Journal, 1984, 76: 300-306.
[15] Tucker C J, Townshond J R G. African land-cover classification using satellite data [J]. Science, 1985, 227: 369-375.
[16] Running S W, Loveland T R. A remote sensing based vegetation classification logic for global land cover analysis [J]. Remote Sensing of Environment, 1995, 51: 39-48.
[17] Lambin E F, Ehrlich D. Land-cover changes in Sub-Saharan Africa (1982—1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale [J]. Remote Sensing of Environment, 1997, 61: 181-200.
[18] Potter C S, Brooks V. Global analysis of empirical relations between annual climate and seasonality of NDVI [J]. International Journal of Remote Sensing, 1998, 19(15): 2 921-2 948.
[19] Richard Y, Poccard I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa [J]. International Journal of Remote Sensing, 1998, 19(15): 2 907-2 920.
[20] Li Xiaobing,Shi Peijun. Research on regulation of NDVI change of Chinese primary vegetation types based on NOAA/AVHRR data[J]. Acta Botanic Sinica,1999, 41(3): 314-324.  [李晓兵, 史培军. 基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究 [J]. 植物学报,1999, 41(3): 314-324.]
[21] Wu Zheng Yi, ed. Vegetation of China[M]. Beijing: Science Press, 1980. 1-50. [吴征镒主编. 中国植被 [M]. 北京: 科学出版社, 1980. 1-50.]
[22] Chen Yunhao, Li Xiaobing, Shi Peijun. Research on change of vegetation fractional cover in Haidian District of Beijing based on remotely sensed data[J]. Acta Phytoecologica Sinica, 2001, 25(5): 588-593.[陈云浩, 李晓兵, 史培军. 基于遥感的北京海淀区植被覆盖变化研究[J]. 植物生态学报, 2001, 25(5): 588-593.]
[23] Sun Rui, Zhu Qijiang. Research on NPP of terrestrial vegetation and their seasonal change in China[J]. Acta Geographica Sinica, 2000, 55(1): 36-45. [孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45.]
[24]Chen  Yunhao, Li Xiaobing, Shi Peijun. Regional evapotraspiration estimation over northwest China using remote sensing[J]. Acta Geographica Sinica, 2001, 56(3): 261-268. [陈云浩, 李晓兵, 史培军. 中国西北地区蒸发散量计算的遥感研究[J]. 地理学报, 2001, 56(3): 261-268.]
[25] Ma Ainai. Remote Sensing Information Models[M]. Beijing: Peking University Press, 1997. 52-61. [马蔼乃著. 遥感信息模型. 北京: 北京大学出版社, 1997. 52-61.]
[26] Mynenl R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes form 1981 to 1991 [J]. Nature, 1997, 386: 698-702.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[9] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[10] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[11] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[12] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[13] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[14] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[15] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
阅读次数
全文


摘要