地球科学进展 ›› 2001, Vol. 16 ›› Issue (6): 755 -760. doi: 10.11867/j.issn.1001-8166.2001.06.0755

研究论文 上一篇    下一篇

遥感水文应用中的尺度问题
傅国斌;李丽娟;刘昌明   
  1. 中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2001-01-12 修回日期:2001-04-18 出版日期:2001-12-20
  • 通讯作者: 傅国斌(1966-),男,山西临猗人,副研究员,主要从事水文水资源方面的研究. E-mail:fugb@igsnrr.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“黄河流域水循环动力学机制与模拟“(G1999043601)和“黄河流域水资源演化规律与二元演化模型”(G1999043602)资助.

SCALE ISSUES ON THE APPLICATIONS OF REMOTE SENSING TO HYDROLOGY

FU Guobin, LI Lijuan, LIU Changming   

  1. Institute of Geographical Science and Natural Resources Research, CAS, Beijing 100101,China
  • Received:2001-01-12 Revised:2001-04-18 Online:2001-12-20 Published:2001-12-01

遥感技术在水文科学中的广泛应用,极大地拓宽了其研究的领域和范围,增加了其研究的深度。但同时也应该看到,遥感信息的空间分辨率和时间分辨率,以及水文科学自身尺度问题的复杂性,一方面对遥感水文的应用产生困难和问题,限制了水文遥感的应用;另一方面又对水文尺度问题提供了新的技术手段,为遥感水文应用增添了新的亮点。从水文机理与空间尺度、遥感信息的空间分辨率、水文参数的空间延拓,以及遥感技术与水文科学的发展等 4个方面探讨了遥感水文的空间尺度问题;从瞬时遥感信息的时间拓展和遥感信息的时间分辨率 2个方面讨论了遥感水文的时间尺度问题。

The applications of remote sensing to hydrology, which can roughly be divided into the direct remote sensing applications and the indirect remote sensing applications, have been extended in last a few decades.  However, its spatial and temporal resolutions of remote sensing information, together with the complex issue of hydrological scales, have double roles to applications of remote sensing on hydrology.  In one side, they meet difficulties because of different spatial and temporal scales; on the other side, they bring new techniques to hydrological scale issues and this will definitely promote the development of hydrology, such as the development of global hydrology.  This paper approaches the spatial scale issue of remote sensing hydrology from four aspects: hydrological process mechanisms at varied scales, spatial resolution of remote sensing information, hydrological parameters gathered at one scale to be used in making predictions at other scale, and the development of hydrology with the aid of remote sensing.  The expansion of instantaneous remote sensing information to a long time scale and temporal resolution of remote sensing information are discussed with temporal scale issue taking into account.

中图分类号: 

[1] Engman E T, Gurney R J. Remote Sensing in Hydrology[M]. New York: Chapman and Hall, 1991.
[2]  Kite G W, Pietroniro A, Pultz T J. Remote sensing in hydrology [A]. Proc NHRI Symp No. 14[C]. NHRI, Saskatoon, Canada. 1995.
[3]  Li Jiren. Remote sensing and water problems [J]. Remote Sensing for Land and Resources, 1999, 41(3): 23-27.[李纪人.遥感与水问题[J]. 国土资源遥感,1999,41(3):23-27.]
[4]  Fu Guobin, Liu Changming. The applications of remote sensing on hydrology: an overview [J]. Advances in Water Science, (2001, in press). [傅国斌,刘昌明.遥感技术在水文学中的应用与研究进展[J].水科学进展(2001, 待发表)]
[5]  Chen Xiuwan. Flood hazard loss evaluation system —Applications of RS and GIS[M].Beijing:  Water Conservancy and Hydroelectric Press of China, 1999. [陈秀万.洪水灾害损失评估系统——遥感与GIS技术应用研究[M]北京:中国水利水电出版社,1999.]
[6]  Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surface [J].  Hydrological Sciences J, 1996, 41(4): 495-516.
[7]  Castruccio P A, Loats Jr H L, D Lloyd, et al. Cost/benefit analysis for the operational application of satellite snowcover observation (OASSO) [A]. In: Proc Final Workshop on OASSO [C].Washington, USA, NASA, CP-211b, 1980.201-222. 
[8]  Rango A. Operational applications of satellite snowcover observation [J]. Water Resources Bulletin, 1980, 16:1 066-1 073.
[9]  Carrol T R. Snow surveying, Yearbook of Science and Technology [M].New York: McGraw-Hill, 1985, 386-398.
[10]  Baumgartner M F, Apfl G M. Remote sensing and geographic information systems [J]. J Hydrological Sciences, 1996, 41(4): 593-607.
[11]  Xia Jun. Scale Problems in hydrology[J]. Journal of Hydraulics Engineering, 1993,5:32-37. [夏军.水文尺度问题[J].水利学报,1993,5:32-37.]
[12]  Alfred Becker, Jarmir Nemec. Macroscale hydrologic model in support to climate research[A]. In: The Influence of Climate Change and Climate Variability on the Hydrologic Regime and Water Resources[C].IAHS Publ No. 168, 1987. 431-445.
[13]  Bloschl G, Sivapalan M. Scale issues in hydrological modeling: a review [J]. Hydrological Process, 1995, 9(3/4).
[14]  Lawrence Dingman S. Physical Hydrology [M]. Prentice Hall,1993.
[15]  Guo Shenglian, Liu Chunzhen. Large scale hydrological model and its coupling with atmospheric model[J]. Journal of Hydraulics Engineering, 1997,7:37-41. [郭生练,刘春蓁. 大尺度水文模型及其与气候模型的联接耦合研究[J].水利学报,1997,7:37-41.]
[16]  Su Z, Pelgrum H, Menenti M. Aggregation effects of surface heterogeneity in land surface processes [J]. Hydrology and Earth System Sciences, 1999, 3(4): 549-563.
[17]  Jackson R D, et al. Estimation of daily evapotranspiration from one time of day measurements[J]. Agricultural Water Management, 1983, 7: 351-362.[18]  Zhang Renhua. Experimental remote sensing models and land surface bases [M].Beijing: Science Press, 1996. [张仁华. 实验遥感模型及地面基础[M].北京:科学出版社,1996.]
[19]  Ren Liliang, Liu Xinren, Hao Zhenchun. A view of some issues on hrdrological scales [J]. Advances in Water Science, 1996, 7(suppl.): 87-99. [任立良, 刘新仁,郝振纯.水文尺度若干问题研究述评[J].水科学进展,1996, 7(增刊): 87-99.]
[20]  Leng Shuying, Song Changqing, Zhao Chunian, et al. Ponder on key projects on geographical sciences in 10th five-year plan [J]. Advance in Earth Sciences, 2000,15:6 745-746.[冷疏影,宋长青,赵楚年,等.关于地理学科“十五”重点项目的思考[J].地球科学进展,2000,15(6):745-746.]
[21]  Stewart J B, Engman E T, Feddes R A, et al. Scaling up in Hydrology Using Remote Sensing[M]. Chichester, England: John Wiley & Sons Ltd, 1996.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[12] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[13] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[14] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[15] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
阅读次数
全文


摘要