地球科学进展 ›› 2001, Vol. 16 ›› Issue (3): 324 -331. doi: 10.11867/j.issn.1001-8166.2001.03.0324

学科发展与研究 上一篇    下一篇

流体构造动力学及其研究现状与进展
徐兴旺,蔡新平,王 杰,张宝林,梁光河   
  1. 中国科学院地质与地球物理研究所,北京  100029
  • 收稿日期:2000-02-23 修回日期:2000-12-11 出版日期:2001-06-01
  • 通讯作者: 徐兴旺(1966-),男,浙江人,副研究员,主要从事构造地质、流体构造动力学及隐伏矿床定位预测研究. E-mail:caixp@igcas.igcas.ac.cn
  • 基金资助:

    国家自然科学基金项目“冀西北钾化蚀变岩中裂理构造的交代成因与控矿作用”(编号:49802021)资助.

TECTONIC DYNAMICS OF FLUIDS AND ITS ADVANCE

XU Xing-wang, CAI Xin-ping, WANG Jie,ZHANG Bao-lin, LIANG Guang-he   

  1. Institute of Geology and Geophysics,CAS,Beijing100029,China
  • Received:2000-02-23 Revised:2000-12-11 Online:2001-06-01 Published:2001-06-01

流体构造动力学是介于流体地质学和构造地质学之间的一个重要前沿领域,主要研究由流体的温度和压力等物理状态及其变化、流体的迁移与运动和流体与岩石矿物发生化学反应等物理与化学过程所引起的构造作用和动力学机制,研究内容涉及流体与构造的关系、流体的构造作用方式、流体构造类型与动力学成因机制。对流体构造动力学主要研究方向的研究成果进行了总结和回顾,介绍了流体构造动力学的一些研究进展,并指出流体是地壳运动、造山作用及岩石的褶皱和断裂等构造过程的重要参与者和组织者。

Fluids are important participators and organizers of tectonic processes, such as plate movement, orogenesis, and folding and fracturing of rocks, in geological history and now. It is a time to set up a corresponding subject—“tectonic dynamics of fluids” to improve the study on tectonics of fluids. Tectonic dynamics is a new interdisciplinary frontier between fluid geology and structural geology. It mainly focuses on structures and tectonic dynamics induced by fluid motion, physical conditions (such as temperature and pressure) and their variation of fluids, and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphism, which formed during interaction between fluids and rocks and have been preserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralization. The research actualities, such as relationship between fluids and tectonics, tectonic pattern of fluids, and fluidogenous tectonics, have been reviewed, and some advances have been introduced and discussed here.

中图分类号: 

[1]  Ramsay J G. Pressure solution—the field data [J]. Journal of Geological Society, 1977, 134:72.
[2]  Durney D W. Early theories and hypothese on pressure-solution-redeposition [J]. Geology, 1978, 6:369-372.
[3]  Paterson M S. A theory for granular flow accommodated by material transfer via an intergranular fluid [J]. Tectonophysics, 1995, 245:135-151.
[4]  Beach A. Retragressive metamorphic processes in shear zones with special referrence to the Lewisian complex [J]. Journal of Structural Geology, 1980, 2(1-2): 257-263.
[5]  Cox S F, Etheridge M A. Couple grain-scale dilatancy and mass transfer during deformation at high fluid pressure:examples from Mount Lyal, Tasmania [J]. Journal of Structural Geology, 1989, 11:147-162.
[6]  Shimizu I. Kinetics of pressure solution creep in quartz: theoretical considerations [J]. Tectonophysics, 1995, 245: 121-134.
[7]  Xie Xinong, Li Sitian. Fluid flow and dynamic model in fault zones [J]. Earth Science Frontier, 1996, 3(3): 145-151.[解习农,李思田.断裂带流体作用及动力学模型[J].地学前缘,1996, 3(3):145-151.]
[8]  Ledru P, Autran A. Relationships between fluia circulation, ore deposition, and shear zones: new evidence from the Salau Scheelite deposit (French Pyrences) [J]. Economic Geology,1987, 82:224-229.
[9]  Atkinson B K. Stress corrosion and the rate-dependent tensile failure of a fine-grained quarz rock [J]. Tectonophysics,1980, 65:281-290.
[10]  Knipe R J. The interaction of deformation and metamorphism in slates [J]. Tectonophysics, 1981, 78:249-272.
[11]  Burg J P, Leon M I P D. Pressure-solution structures in a granite [J]. Journal of Structural Geology, 1985, 7(3):431-436.
[12]  Fyfe W S, Kerrick R. Fluids and thrusting [J]. Chemical Geology , 1985,49:353-362.
[13]  Tobisch O T, Barton M D, Vernon R H,et al. Fluid-enhanced deformation: transformation of granitoids to banded mylonites, western Sierra Nevada, California, and southeastern Australia [J]. Journal of Structural Geology, 1991,13(10): 1 137-1 156.
[14]  Roddy M, Reynolds S, Smith B,et al. K-metasomatism and detachment-related mineralization, Harcavar Mountains,Arizona [J]. Geological Society of America Bulletin, 1988,100:1 627-1 639.
[15]  Newton R C. Fluids and shear zones in the deep crust [J].Tectonophysics, 1990, 182:21-37.
[16]  Losh S. Stable isotope and modeling studies of fluid-rock interaction associated with the Snake Range and Mormon Peak detachment faults, Nevada [J]. Geological Society of America Bulletin , 1997,109(3):300-323.
[17]  Hubbert M K, Rubey W W. Roles of fluid pressure in mechanics of overthrust fulting [J]. AAPG Bulletin, 1959, 70:167-206.
[18]  Bryant D G. Intrusive breccias associated with ore, Warren(Bisbee) Mining District, Arizona [J]. Economic Geology,1968, 63(1): 1-12.
[19]  Llambias E J, Malvicini L. Geology and genesis of the Bi-Cumineralized breccia-pipe, San Francisco de Los Andes, San Juan, Argentina[J]. Economic Geology, 1969, 64 (3):271-286.
[20]  Norton D L, Cathles L M. Breccia pipes, products of exsolved vapor from magmas [J]. Economic Geology, 1973 ,68(3):540-546.
[21]  Sharp J E. Cave Peak, a molybdenum-mineralized breccia pipe complex in Culberson County, Texas[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1979, 74(3):517-534.
[22]  Norman D I, Sawkins F J. The tribag breccia pipes: Precambrian Cu-Mo deposits, Batchawana Bay, Ontario[J]. Economic Geology, 1985, 80(5):1 593-1 621.
[23]  Silitoe R H. Ore-related breccias in volcanoplutonic areas[J]. Economic Geology , 1985, 80(5):1 467-1 514.
[24]  Barker E M, Andrew A S. Geologic, Fluid Inclusion, and Stable Isotope studies of the Gold-Bearing Breccia Pipe at Kidston, Queensland, Australia [J]. Economic Geology,1991, 86:810-830.
[25]  Li Shengyuan. Characteristics and origin of the Gengzhuang subvolcanogene hydrothermal gold deposit [J]. Geology and Prospecting, 1988, 24(5): 1-7.[李生元.耿庄次火山热液型金矿的特征与成因[J].地质与勘探,1988,24(5):1-7.]
[26]  Zhang Zengfeng. General features and genetic mechanism of crypto-explosive breccias[J]. Geological Science and Technology Information, 1991, 10(4): 1-5.[张增凤.隐爆角砾岩的特征及其形成机制[J].地质科技情报, 1991, 10(4): 1-5.]
[27]  Zhang Hongtao, Rui Zongyao. On the genetic classification of mineralized breccias related to porphyry deposits and its geological significance [J]. Mineral Deposits, 1991, 10(3):265-271.[张洪涛,芮宗瑶.论与斑岩矿床有关的矿化角砾岩成因类型及其地质意义[J].矿床地质,1991,10(3):265-271.]
[28]  Xu Xingwang, Sun Liqian, Lei Weizhi,et al. Structural characteristics, petrogenesis and mineralization of the massive polymetal deposits in Baiyin, Gansu Province, China[J]. Journal of Geomechanics, 1996, 2: 85-94.
[29]  Xu Xingwang, Cai Xingpin, Zhang Baolin,et al. Tectonic function and mineralization of fluids [J]. Mineral Deposits,1998, 7(Sup):1 067-1 070. [徐兴旺,蔡新平,张宝林,等.流体的构造作用与成矿[J].矿床地质,1998,7(sup.):1 067-1 070.]
[30]  Xu Xingwang, Caixinping, Qin Dajun,et al. Tectonic dynamic process of ore-forming fluids in the breccia pipe,Qibaoshan, Shangdong [J]. Gold Geology, 1999, 5(3): 19-27.[徐兴旺,蔡新平,秦大军,等.山东七宝山角砾岩筒结构和成矿流体构造动力学过程的恢复[J].黄金地质,1999,5(3):19-27.]
[31]  Reynolds D. Fluidization as a geological process, and its bearing on the problem of intrusive granites [J]. American Journal Sciences, 1954, 252:577-613.
[32]  Wolfe J A. Fluidization versus phreatomagmatic explosions in breccia pipes [J]. Economic Geology, 1980,75(7):1 105-1 108.
[33]  Burnham C W. Energy release in subvolcanic environments:implications for breccia formation [J]. Economic Geology,1985, 80:1 515-1 522.
[34] 徐兴旺,蔡新平,秦大军,等,山东七宝山角砾岩筒流体温压双重致裂机制与金铜成矿[J].中国科学(D辑), 2000, 30(1):47-52.
[35]  Xu Xingwang, Cai Xinping, Qin Dajun,et al. Fluids double-fracturing genetic mechanism and mineralization of gold-copper of the breccia pipe at Qibaoshan in Shandong Province[J]. Chinese Sciencia (D), 2000, 30(2): 113-121.
[36]  Fyfe W S, Price N J, Thompson A B. Fluids in the Earth' s Crust [M]. Amsterdam: Elsevier Scientific Publihing Company, 1978.1-363.
[37]  Davies J B, Archambeau C B. Analysis of high-pressure fluid flow in fractures with application to Yucca Mountain , Nevada, slug test data [J]. Tectonophysics, 1997, 277:83-98.
[38]  Zheng Y, Wang Y, Liu R,et al. Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beiking, China [J]. Journal of Structural Geology, 1988, 10(2):135-144.
[39]  Ma Changqian. The magma-dynamic mechanism of emplacement and compositional zonation of the Zhoukoudian stock,Beijing[J]. Acta Geologica Sinica, 1988, 62(4): 329-341.[马昌前.北京周口店岩株侵位和成分分带的岩浆动力学机理[J].地质学报, 1988, 62(4):329-341.]
[40]  Qian Weihong. The motion of the Earth interior liquid and global tectonics [J]. Earth Science Frontier, 1996, 3(3):152-160.[钱维宏.地球内部流体运动与全球构造[J].地学前缘,1996, 3(3):152-160.]
[41]  Sun Xiong, Ma Zongjin, Hong Hanzhing. Preliminary discussion on "Structure fluid dynamics" [J]. Earth Science Frontier, 1996, 3(3):138-144.[孙雄,马宗晋,洪汉诤.初论“构造流体动力学”[J].地学前缘,1996,3(3):138-144.]
[42]  Meissner K, Wever R. The possible role of fluids for the structuring of the continental crust [J]. Earth Science Reviews, 1992,32:19-32.
[43]  Hobbs B E. The influence of metamorphic environment up the deformation of minerals [J]. Tectonophysics, 1981, 78:335-383.
[44]  Rutter E H. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks [J]. Tectonophysics, 1974, 22:311-334.
[45]  Wintsch R P, Christoffersen R, Kronenberg A K. Fluidrock reaction weakening of fault zone [J]. Journal of Geophysical Reaserch, 1995, 100(7):13 021-13 032.
[46]  Open Laboratory of Ore Deposit Geochemistry, CAS. Ore Deposit Geochemistry [M]. Beijing: Geological Publishing House, 1997. 1-29.[中国科学院矿床地球化学开发研究实验室.矿床地球化学[M].北京:地质出版社, 1997.1-29.]
[47]  Mueller R F, Saxena S K. Chemical Petrology [M]. New York:Springer-Verlag, 1977. 29-33.
[48]  Chen Yong, Wu Xiaodong, Zhang Fuqin. Thermal fracture experiment [J]. Chinese Sciences Bulletin, 1999,44:880-883.[陈勇,吴晓东,张福勤.热致裂实验研究[J].科学通报,1999, 44:880-883.]
[49]  Hammer S K. Segregation bands in plagioclase: non-dilational quartz veins formed by strain enhanced diffusion [J].Tectonophysics, 1981,79:T53-T61.
[50]  Rubie D C. Reaction-enhanced ductility: the role of solid-solid univariant reactions in deformation of the crust and mantle[J]. Tectonophysics, 1983, 96:331-352.
[51]  Xu Xingwang, Li Dongxu. Metamorphic and cataclastic granularization of mineral in ductile shear zone and classification of mylonites in the Huairou area, Beijing[A]. In:Tectonics Symposium Abstracts[C]. 1994.140-141.[徐兴旺,李东旭.北京怀柔地区韧性剪切带中矿物的变质粒化作用、脆性粒化作用及糜棱岩分类[A].见:大陆构造学术讨论会论文摘要[C].1994.140-141.]
[52]  Bell T H. The deformation and recrystallization of biotite in the WOODREFFE thrust mylonite zone [ J ]. Tectonophysics, 1979, 58:139-158.
[53]  Atkinson B K, Meredith P G. Stress corosion cracking of quartz:a note on the influence of chemical environment [J].Tectonophysics, 1981, 77:T1-T11.
[54]  Urai J L. Water-enhanced dynamic recrystallization and solution transfer in expermentally deformed carnallite [ J ].Tectonophysics, 1985,120:285-317.
[55]  Urai J L, Spiers C J, Zwart H J,et al. Weakening of rock salt by water during long-term creep [J]. Nature, 1986,324:554-557.
[56]  Griggs D T, Blacic J D. Quartz:anomalous weakness of synthetic crystals [J]. Science, 1965, 147:292-295.
[57]  Griggs D T. Hydrolytic weakening of quartz and other silicates [J]. Geophys J R Astron Soc, 1967 , 14:19-31.
[58]  Blacic J D. Effect of water on thevexperimental deformation of olivine[J]. Am Geophys Union, Geophys Monogr, 1972 ,16:109-115.
[59]  Boland J N, Tullis T E. Deformation behavior of wet and dry clinopyroxenite in the brittle toductile transition region[A].In: Hobbs Heard,ed. Geophysical Monograph 36, Mineral and rock deformation: Laboratory studies, the Paterson Volume[C]. American Geophysical Unoin, Washington, D C,1986. 35-49.
[60]  Borradail C J, Mcarthur J. Experimental calcite fabric in a synthetic weaker aggregate by coaxial and non-coaxial deformation [J]. Journal of Structural Geology, 1990, 12(3):351-363.
[61]  Freundt A, Rosi M. From Magma to Tephra-Modelling Physical Processes of Explosive Volcanic Eruptions[Z]. ELSEVIER,1999. 1-334.
[62]  Woods A, Spark S, Connor C,et al. A Model of the Interaction of a Fissure Eruption with a Horizonal Tunnel[Z]. IUGG 99, birmingham, abstracts, 1999. B169.
[63]  Hill B, Connor C, Doubike P. Constraints on Shallow Basalic Subvolcanic Conduit Dimensions[Z]. IUGG 99, birmingham, abstracts, 1999.B169.
[64]  Toramaru A. Thermodynamic and Kinrtic Consideration of Magma Fragmentation as a Rarefaction Shock Wave[Z]. IUGG 99, birmingham, abstracts, 1999,B167.
[65]  Melnik O, Sparks S. The Influence of Fragmentation Criterion on Explosive Flow Dynamcs in High-viscous Gas-saturated Magamas[Z]. IUGG 99, abstracts, 1999, B167.
[66]  Zimanowski B, Buettner R, Caffier I. The Ash Problem:Hydrodynamic Versus Brittle Fragmentation[Z]. IUGG 99,Birmingham, abstracts, 1999, B167.
[67]  Dellino P, Volpe L L. Contrasting Fragmentation and Transportation Dynamics in the Agnano Monte Spina eruption (4.1KA) at Phlegrean field (southern Italy) [Z]. IUGG 99,birmingham, abstracts, 1999, B167.
[68]  Buettner R, Zimanowski B, Roeder H. Monitoring of Magma Fragmentation by Electrical Field Measurements[Z]. IUGG 99, Birmingham, abstracts, 1999,B168.
[69]  Ryang G A, Lane S J, Phillips J C. Fragmentation Behaviour of a Laboratory Analogue to Explosive Magmatic Flows[Z].IUGG 99, Birmingham, abstracts, 1999,B167.
[70]  Taddeucci J, Wohletz K. Magma Fragmentation during the Plinian Phase of the Minoan Eruption (Santorini, Greece),as Inferred by Deposit Features and Pyroclast Textures[Z].IUGG 99, Birmingham, abstracts, 1999. B170.
[71]  Ongaro T E, Neri A. Flow Patterns of Overpressured volcanic jets [Z]. IUGG 99, Birmingham, abstracts, 1999.B171.
[72]  Wada Y. Five Parallel Brecciated Felsic Dikes, Observed at Central KII Peninsula, SW Japan[Z]. IUGG 99, Birmingham, abstracts, 1999, B172.
[73]  Papale P. Strain-induced magma fragmentation and Non-equilibrium Flow Dynamics in Volcanic Conduits[Z]. IUGG 99, Birmingham, abstracts, 1999.B172.
[74]  Colgate S A, Sigurgeisson T. Dynamic mixing of water and lava [J]. Nature, 1973, 224:252-255.
[75]  Boulter C A, Wilton V M, Cox D J,et al. Magma-wet-sediment interaction: The most widespread yet least recognized alteration system in the Iberian pyrit belt [A]. In: Stanley C J,et al, eds. Mineral Deposits: Processes to Processing(volume1)[C]. London: A.A.BALKEMA,1999.483-486.
[76]  Skilling I. Basaltic Magma Fragmentation Mechanisms within Muddy to Sandy Wet Sediments: A Textural Study of Peperite from welgesien, South Africa[Z]. IUGG 99, birmingham, abstracts, 1999.B1679.
[77]  Xu Xing-wang, Cai Xinping, Liang Guanghe,et al. Detailed prediction on position, shape and size of concealed ore-bearing breccia pipes in the subvolcanic complex in Qibaoshan area, Shangdong [J]. Gold Science and technology, 1999, 7(2): 9-18.[徐兴旺,蔡新平,梁光河,等.山东七宝山次火山杂岩区隐伏含矿角砾岩筒位-形-域精细预测[J].黄金科学技术,1999,7(2):9-18.]

[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[3] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[4] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[5] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[6] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[7] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[8] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[11] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[12] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[13] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[14] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要