地球科学进展 ›› 1998, Vol. 13 ›› Issue (3): 300 -305. doi: 10.11867/j.issn.1001-8166.1998.03.0300

干旱气候变化与可持续发展 上一篇    下一篇

第四纪孢粉分析的时间序列与空间模型
郑卓   
  1. 中山大学地球科学系 广州 510275
  • 收稿日期:1997-05-28 出版日期:1998-06-01
  • 通讯作者: 郑卓
  • 基金资助:

    国家自然科学基金项目“雷琼地区湖相晚第四纪孢粉分析及定量古环境研究”(项目编号:49671074)资助。

QUATERNARY PALYNOLOGICAL TIME SERIES AND SPATIAL PATTERNS

Zheng Zhuo   

  1. Department of Earth Sciences, Zhongshan University, Guangzhou 510275
  • Received:1997-05-28 Online:1998-06-01 Published:1998-06-01

论述了第四纪孢粉时间序列和孢粉空间模型在不同尺度上的时空代表性,同时介绍了一些相关的研究方法和主要成果。利用数理统计方法来定量恢复古气候已成为目前第四纪孢粉时间序列研究的一个发展趋势。各种尺度的第四纪孢粉空间模型图可以反映植被对第四纪气候变化的响应。根据孢粉数据与气候变量之间的函数关系还可换算成古气候图。此外,在全球气候模拟和植被模拟中,孢粉数据成为必不可少的诊断工具。

    Quaternary palynological time series and spatial patterns of different scale hierarchies are discussed in this paper. Some related methods and principal results are also introduced. The palynological studies today in the world, including those of million year duration down to those of less than hundred years, may represent various characteristics of environmental change. Applications of transfer functions and other statistic methods to reconstruct the paleoclimate flucturations is being a trend of pollen sequence analysis.
    The restoration of the Quaternary spatial distribution of vegetation of different scales is so call Quaternary pollen spatial pattern. This pattern reflect the spatial response of vegetation or pollen types to the Quaternary  climate changes. The quantitative climate calibration from pollen record can also help to establish the spatial paleoclimate characters. Additionally, pollen data is recently a diagnostic tool to validate climate and biome models of global scale.

中图分类号: 

[1] Delcourt H R,Delcourt P A.Late Quaternary vegetational history of the central Atlantic states.In: The Quaternary of Virginia. Virginia Commonwealth Division of Mineral Resources, 1986. 23~35.
[2] Imbrie J, Kipp N G. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In: Turekian K. The Late Cenozoic Glacial Age. New Haven: Yale Univ Press, 1971. 71~181.
[3] Webb T Ⅲ, Bryson R A.Late and post glacial change in the northern Midwest,USA:quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research, 1972, 2: 70~115.
[4] Guiot J. Methodology of paleoclimatic reconstruction from pollen in France. Palaeogeogr Palaeoclimat Palaeoecol,1990, 80: 49~69.
[5] Huntley B. Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13 000 years.Quaternary Research, 1990, 33: 360~376.
[6] Prentice I C.Vegetation responses to past climate variation. Vegetatio, 1986, 67: 131~141.
[7] Webb R S, Anderson K H, Webb T Ⅲ. Pollen response surface estimate of Late Quaternary changes in the moisture balance of the northeastern United States. Quaternary Research, 1993, 40: 213~227.
[8] Prentice I C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate.Journal of Biogeography, 1992, 19: 117~134.
[9] Noblet N. Modelling late-Quaternary paleoclimates and paleobiomes. In:Guntley B, et al. Past and future rapid environmentl changes: The spatial and evolutionary responses of terrestrial Biota. Berlin: Springer-Verlag, 1997. 31~52.
[10] Claussen M,Esch M.Biomes computed from simulated climatologies. Climate Dynamics, 1994, 9: 235~244.
[11] Webb T Ⅲ. Constructing the past from late Quaternary pollen data: temporal resolution and a zoom lens space-time perspective. In: Wright Jr, et al. Taphonomic approaches to time resolution in fossil assemblages. Univ Tennessee Knoxvill T N, 1993. 79~101.
[12] Miller K G, Fairbanks R G,Mountain G S.Tertiary oxygen isotop synthesis, sea level history,and continental margin erosion. Palaeoceanography, 1987, 2:1~19.
[13] Suc J P, Clauson C, Bessedik M, et al. Neogene and lower Pleistocene in southern France and northeastern Spain.Mediterranean environment and climate.Cahiers de Micropaleontologie, 1992, 7(1/2): 165~186.
[14] Hooghiamstra H.Vegetational and climatic history of the high plain of Bogota,Colombia:A continuous record of the last 3. 5 million years. In: Berger A, et al. Milankovitch and Climate(Part I). Dordrecht: D Reidel Publ Co, 1984. 371~378.
[15] Webb P N, Harwood D M. Pliocen fossil Nothfagus (southern beech ) from Antarctical phytogeography, dispersal strategies,and survival in high latitude glacial-deglacial environments.In:Alden J,et al.Forest development in cold climates.New York:Plenum Press, 1993. 135~165.
[16] Mommersteeg H J P M, Loutre M F, Young R, et al. Orbital forced frequences in the 975 000 year pollen record from Tenagi Philippon(Greece). Climate Dynamics, 1995, 11(1): 4~24.
[17] 郑卓, 雷作淇. 雷州半岛近40万年来的古植被与古生态: 田洋湖钻孔孢粉数值分析. 中山大学学报, 1992, (1) : 124~137.
[18] Webb T Ⅲ.Spatial response of plant taxa to climate change:A palaeoecological perspective.In:Huntley B,et al.Past and future rapid environmental changes: the spatial and evolutionary responses of terrestrial Biota. Berlin: Springer-Verlag, 1997. 55~72.
[19] Guiot J, Pons A, Beaulieu J L, et al. A 140 000 year climatic resconstruction from two european pollen records. Nature, 1989, 338: 309~313.
[20] Webb T Ⅲ, Bartlein P J,Harrison S P,et al.Vegetation, lake level and climate in eastern North America for the past 18 000 years. In: Wright H E, et al. Global climates since the last Glacial Maximum. London: Univ of Minnesota  Press,1993. 415~467.
[21] Kutzbach J, Guetter P J, Behling P, et al. Simulated climate changes. In: Wright H E, et al. Global Climate since the Last Glacial Maximum. Minneapolis:University of Minnesota Press, 1993. 24~93.

[1] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[2] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[3] 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774.
[4] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[5] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[6] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[7] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[8] 唐彦丽, 董文杰, 李立娟, 薛巍, 王斌. CPL7及其在中国地球系统模式中的应用前景[J]. 地球科学进展, 2015, 30(5): 620-625.
[9] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[10] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[11] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[12] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[13] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[14] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[15] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
阅读次数
全文


摘要