地球科学进展 ›› 2008, Vol. 23 ›› Issue (10): 1050 -1060. doi: 10.11867/j.issn.1001-8166.2008.10.1050

综述与评述 上一篇    下一篇

陆面过程中植被的描述及其卫星遥感反演——从定性描述向定量描述的发展
何晴,吕达仁   
  1. 中国科学院大气物理研究所,北京 100029
  • 收稿日期:2008-03-26 修回日期:2008-09-03 出版日期:2008-10-10
  • 通讯作者: 何晴 E-mail:heqing@mail.iap.ac.cn
  • 基金资助:

    国家自然科学基金资助项目“基于植被特征连续分布(VCF)的多角度资料遥感反演陆面参数方法研究”(编号:40601063);中国科学院知识创新工程重要方向项目“中国西北西部气候和水分过程的变化特征及其相互联系的研究”(编号:KZCX3-SW-229)资助.

The Utility of Satellite Observation to Retrieve Vegetation Status for Land Surface Models—Towards Quantitative Description of the Land Surface Vegetation

He Qing,Lü Daren   

  1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China
  • Received:2008-03-26 Revised:2008-09-03 Online:2008-10-10 Published:2008-10-10

植被在陆面参数化方案(Land Surface Parameterizations, LSPs)中的描述经历着从定性描述向定量描述发展的过程。这一方面是由于陆面过程研究的深入,另一方面则得益于地表植被信息获取方式的进步,尤其是卫星遥感技术的发展。对三代LSPs中的植被描述做了简要概述,并介绍了卫星遥感在植被参数反演上的发展和应用情况。其中包括:①定性描述,主要指地表覆盖类型的描述方式;②部分参数定量描述,指SiB2等模式中对LAI等时空变化较大的少数参数由卫星资料直接反演的赋值方式;③植被特征连续分布(VCF)定量描述,一种完全定量的描述方式。

The vegetation influences the exchange of energy, mass and momentum between the land surface and atmosphere. With the increase of our understanding and the development of remote sensing, the description of land surface vegetation status is changing in the three generations of land surface parameterizations (LSPs). In the second generation of LSPs, the values of the vegetation parameters are obtained from the land cover maps that are the qualitative descriptions about the land surface. In some third generation of LSPs, some important vegetation parameters are retrieved directly from the satellite data, and this provides a more quantitative description of the vegetation status. Vegetation Continuous Field (VCF) is a quantitative description about the vegetation, which can be viewed as an alternative to the traditional classification approach for using remote sensing data to characterize global land cover. This paper reviews how the descriptions varies from a qualitative one to the more quantitive ones, and introduces the application of satellite remote sensing to retrieving these vegetation variations.

中图分类号: 

[1] Roujean J L. A tractable physical model of shortwave radiation interception by vegetative canopies[J]. Journal of Geophysical Research,1996,101:9 523-9 532.

[2] Sellers P J,Dickinson R E,Randall D A,et al. Henderson-eellers, modeling the exchanges of energy,water,and carbon between continents and the atmosphere[J]. Science,1997,275:502-509.

[3] Manabe S. Climate and ocean circulation: I. The atmospheric circulation and the hydrology of the Earth's surface[J]. Monthly Weather Review,1969,97:739-774.

[4] Sun Shufen. Advance in land surface process study[J]. Bimonthly of Xinjiang Meteorology,2002,6: 1-6.[孙菽芬. 陆面过程研究的进展[J]. 新疆气象,2002,6:1-6.]

[5] Charney. Dynamics of deserts and drought in the Sahel[J]. Quarterly Journal of the Royal Meteorological Society,1975,101428:193-202.

[6] Charney J G,Quirk W J,Chow S H. A comparative study of the effects of albedo change on drought in semi-arid regions[J]. Journal of the Atmospheric Sciences,1977,349:1 366-1 385.

[7] Dickinson R E. Land processes in climate models, International Satellite Land Surface Climatology Project[J]. Remote Sensing of Environment,1995,51special issue:27-38.

[8] Cao Mingkui,Li Kerang. Perspective on terrestrial ecosystem-Climate interaction[J]. Advances in Earth Science,2000,154:446-452.[曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J].地球科学进展, 2000,154:446-452.]

[9] Dickinson R E,Henderson-Sellers A,Kennedy P J. Biosphere Atmosphere Transfer SchemeBATS Version le as Coupled to the NCAR Community Climate Model[M]. NCAR Technical Note,NCAR,1993.

[10] Sellers P J,Mintz W,Sud Y C,et al. A simple biosphere modelSiB for use within general circulation models[J]. Journal of Atmospheric Sciences,1986,43:505-531.

[11] Dickinson R E.Modelling evapotranspiration for three-dimensional global climate models[C]Hansen J E,Takahashi T,eds. Climate Processes and Climate Sensitivity,Geophysical Monograph 29,Maurice Ewing Volume 5,American Geophysical Union,1984:58-72.

[12] Sellers P J,Los S O,Tucker C J,et al. A revised land surface parameterizationSiB2 for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data[J]. Journal of Climate,1996,9:706-737.

[13] Dorman J L,Sellers P J. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere modelSiB[J]. Journal of Applied Meteorology,1989,28:833-855.

[14] Running S W,Loveland T R,Pierce L L,et al. A remote sensing based vegetation classification logic for global landcover analysis[J]. Remote Sensing of Environment,1995,511:39-48.

[15] Townshend J R G,Justice C,Li W,et al. Global land cover classification by remote sensing:Present capabilities and future possibilities[J]. Remote Sensing of Environment,1991,35:243-255.

[16] Running S W,Loveland T R,Pierce L L,et al. A remote sensing based vegetation classification logic for global landcover analysis[J]. Remote Sensing of Environment,1995,511:39-48.

[17] DeFries R,Townshend J R G. Global land cover: Comparison of ground-based data sets to classifications with AVHRR data[C]Environmental Remote Sensing from Regional to Global Scales,1994:84-110.

[18] Matthews E. Global vegetation and land use: New high-resolution data bases for climate studies[J]. Journal of Climate Applied Meteorology,1983,22:474-487.

[19] Wilson M F,Henderson-Sellers A. A global archive of land cover and soils data for use in general circulation climate models[J]. Journal of Climatology,1985,5:119-143.

[20] Olson J S,Watts J,Allison L. Carbon in live vegetation of major world ecosystems[R]. US Department of Energy,Oak Ridge National Laboratory,1983.

[21] DeFries R,Belward A S. Global and regional land cover characterization from satellite data: An introduction to the special issue[J]. International Journal of Remote Sensing,2000,216/7: 1 083-1 093.

[22] Loveland T R,Reed B C,Brown J F,et al. Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data[J]. International Journal of Remote Sensing,2000,216/7:1 303-1 330.

[23] Hansen M C,DeFries R S,Townshend J R G,et al. Global land cover classification at 1km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing,2000,21:1 331-1 364.

[24] Strahler A D,Muchoney J,Borak M,et al. MODIS Land Cover Product. Algorithm Theoretical Basis DocumentATBD. Version 5.0[EB/OL].http:geography.bu.edu/landcover/userguidelc/. 72,1999.

[25] Scepan J.Thematic validation of high-resolution global land-cover data sets,Photogramm. Engr[J]. Remote Sensing,1999,65:1 051-1 060.

[26] Hall F G,Brown de Colstoun E,Collatz G J,et al. ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies[J]. Journal of Geophysical Research,2006,111, D22S01,doi:10.1029/2006JD007366.

[27] Anonymous,Anonymous.Validation of the consistent-year V003 MODIS land cover product[JB/OL]. http://www-modis.bu.edu/landcover/userguidelc/consistent.htm,2004.

[28] Hansen M,Reed B. A comparison of the IGBP-DIScover and the University of Maryland 1 km global land cover products,Int[J]. Journal of Remote Sensing,2000,21:1 365-1 374.

[29] Olson J S,Watts J,Allison L.Carbon in live vegetation of major world ecosystems[R]. Report W-7405-ENG-26, Oak Ridge Natlural Labortory,US Department of Energy,Oak Ridge,Tenn,1983.

[30] Matthews E. Atlas of archived vegetation and land use and seasonal albedo data sets[Z]. NASA Techical Memorandum,1985,68199:54.

[31] Hall F G,Townshend J R,Engman E T. Status of remote sensing algorithms for estimation of land surface state parameters[J]. Remote Sensing of Environment,1995,511:138-156.

[32] Li Xiaobing,Chen Yunhao,Yu feng.Global and regional cover mapping from remote sensing data: Status quo, strategies and trends[J]. Advances in Earth Science,2004,191:71-80.[李晓兵,陈云浩,喻锋. 基于遥感数据的全球及区域土地覆盖制图——现状、战略和趋势[J].地球科学进展,2004,191:71-80.]

[33] Gong P,Marceau D J,Howarth P J. A comparison of spatial feature extraction algorithms for land use classification with SPOT HRV data[J]. Remote Sensing of Environment,1992,40:137-151.

[34] Tashpolat· Tiyip.On accuracy of the land covek classification in case of using fractal featue[J]. Journal of Remote Sensing,1994,92:150-159.[塔西浦拉提·特依拜.利用分形特征量提高土地覆盖分类图精度的研究[J].环境遥感,1994,92:150-59.]

[35] Gao F,Schaaf C B,Strahler A H,et al. Detecting vegetation structure using a kernel-based BRDF model[J]. Remote Sensing of Environment,2003,86:198-205.

[36] Long Fei ,Zhao Yingshi.Utilizing the multi-angle NOAA satellite data to enhance terra species information identification[J]. Journal of the Graduate School of the Chinese Acadmy of Science,2002,191):69-74.[龙飞.赵英时.NOAA卫星角度信息在分类中的有效性研究[J].中国科学院研究生院学报,2002,191):69-74.]

[37] Diner D J,Asner G P,Davies R,et al. New directions in Earth observing: Scientific application of multi-angle remote sensing[J]. Bulletin of the American Meteorological Society,1999,80:2 209-2 228.

[38] Friedl M A,McIver D K,Hodges J C F,et al. Global land cover mapping from MODIS: Algorithms and early results[J]. Remote Sensing of Environment,2002,831/2:287-302.

[39] Farquhar G D,Caemmerer S von,Berry J A.Abiochemical model of photosynthetic CO2 assimilation in leaves of C3 plants[J]. Planta,1980,149:78-90.

[40] Farquhar G D,Sharley T D.Stomatal conductance and photosynthesis[J]. Annuals Review Plantary Physiology,1982,33:317-345.

[41] Collatz G J,Ball J T,Grivet C,et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer[J]. Agricultural and Forest Meteorology,1991,54:107-136.

[42] Collatz G,Ribas-Carbo M,Ball J A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants[J]. Australian Journal of Plant Physiology,1992,19:519-538.

[43] Defries R S,Field C B,Fung L.et al. Mapping the land surface for global atmosphere-biosphere models:Toward continuous distributions of vegetation's functional properties[J]. Journal of Geophysical Research,1995,100D10:20 867-20 882.

[44] Ji Jinjun. A climate-vegetation interaction model:Simulating physical and biological processes at the surface[J]. Journal of Biogeography,1995,22:445-451.

[45] Ji Jinjun,Yu Li. A simulation study of coupled feedback mechanism between physical and biogeochemical processes at the surface[J]. Scientia Atmospherica Sinica,1995,234:439-448.[季劲钧,余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究[J].大气科学,1995,234:439-448.]

[46] Sellers P J,Randall D A,Collatz C J,et al. A revised land surface parameterizationSiB2 for atmospheric GCMs. Part 1: Model formulation[J]. Journal of Climate,1996,9: 676-705.

[47] Van den Hurk B J J M,Viterbo P,Los S O. Impact of leaf area index seasonality on the annual land surface evaporation in a global circulation model[J]. Journal of Geophysical Research,108D6,4191,doi:10.1029/2002JD002846,2003.

[48] Buermann W,Dong J,Zeng X,et al.Evaluation of the utility of satellite-based leaf area index data for climate simulation[J]. Journal of Climate,2001,14:3 536-3 550.

[49] Crawford Todd M,David J Stensrud,Franz Mora,et al. Value of incorporating satellite-derived land cover data in MM5/PLACE for simulating surface temperatures[J]. Journal of Hydrology,2001,2:453-468.

[50] Kang Hyunsuk,Xue Yongkang,James Collatz G. Impact assessment of satellite-derived leaf area index datasets using a general Circulation Model[J]. Journal of Climate,2007,15:993-1 015.

[51] Tian Qingjiu,Min Xiangjun. Advances in study on vegetation indices[J]. Advances in Earth Science,1998,134:327-333.[田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,134:327-333.]

[52] Guo Ni.Vegetation index and its advances[J]. Arid Meteorology,2003,204:71-75.[郭铌.植被指数及其研究进展[J].干旱气象,2003,204:71-75.]

[53] Ross J K. The Radiation Regime and Aarchitecture of Plant Sstands[M]. The Hague,The Netherlands:W. Junk,1981:391.

[54] Gobron N,Pinty B,Verstraete M M,et al. A semi-discrete model for the scattering of light by vegetation[J]. Journal of Geophysical Research,1997,102:9 431-9 446.

[55] Kimes D S,Kirchner J A. Radiative transfer model for heterogeneous 3-D scenes[J]. Applied Optics,1982,21:4 119-4 129.

[56] Myneni R B,Asrar G,Gerstl A W. Radiative transfer in three dimensional leaf canopies[J]. Transport Theory and Statistical Physics,1990,19:1-54.

[57] Gastellu-Etchegorry J P,Demarez V,Pinel V,et al. Modeling radiative transfer in heterogeneous 3-D vegetation canopies[J]. Remote Sensing Environment,1996,58:131-156.

[58] Li X,Strahler A H. Geometric-optical modeling of a coniferous forest canopy[J]. IEEE Transactions on Geoscience Remote Sensing,1985,23:207-221.

[59] Li X,Strahler A H. Geometric-optical bidirectional reflectance modeling of a coniferous forest canopy[J]. IEEE Transactions on Geoscience Remote Sensing,1986,24:281-293.

[60] Li X,Strahler A H. Geometric-optical bidirectional reflectance modeling of discrete crown vegetation canopy: Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience Remote Sensing,1992,30:276-292.

[61] Nilson T,Peterson U. A forest canopy reflectance model and a test case[J]. Remote Sensing Environment,1991,37:131-142.

[62] Garc i′a-Haro F J,Sommer S. A fast canopy ref lectance model to simulate realistic remote sensing scenarios[J]. Remote Sensing of Environment,2002,81:205-227.

[63] Kuusk A,Nilson T. A directional multispectral forest reflectance model[J]. Remote Sensing Environment,2000,72:244-252.

[64] Borel C C,Gerstl A W,Powers B. The radiosity method in optical remote sensing of structured 3-D surfaces[J]. Remote Sensing Environment,1991,36:13-44.

[65] Goel N S,Rozehnal I,Thompson R J. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region[J]. Remote Sensing Environment,1991,36:73-104.

[66] Govaerts Y,Verstraete M M. Raytran: A monte carlo ray tracing model to compute light scattering in three-dimensional heterogeneous media[J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36:493-505.

[67] North P R J. Three-dimensional forest light interaction model using a Monte Carlo method[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34:946-956.

[68] Li Xiaowen,Wang Jindi.Plant Photon Remote Sensing Model and Parameterizing of Plant Structure[M]. Beijing:Science Press,1995.[李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995.]

[69] KnyazikhinY,Martonchik J V,Diner D J,et al.Estimation of vegetation leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data[J]. Journal of Geophysical Research,1998,103:32 239-32 256.

[70] Bicheron P,Leroy M. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing Environment,1999,67:251-266.

[71] Tian Y,Woodcock C E,Wang Y,et al. Multiscale analysis and validation of MODIS LAI product I. Uncertainty assessment[J]. Remote Sensing Environment,2002,83:415-431.

[72] Cohen W B,Maiersperger T K,Yang Z,et al. Comparisons of land cover and LAI estimates derived from EMT+ and MODIS for four sites in North America:A quality assessment of 2000/2001 provisional MODIS products[J]. Remote Sensing Environment,2003, 88:233-255.

[73] Wenze Yang,Bin Tan,Dong Huang,et al. MODIS leaf area index products:From validation to algorithm improvement[J]. IEEE Transaction on Geoscience and Remote Sensing,2006,447:1 885-1 898.

[74] Oleson K W,Bonan G B. The effects of remotely sensed plant functional type and leaf area index on simulations of boreal forest surface fluxes by the NCAR land surface model[J]. Journal of  Hydrometeorology,2000,1:431-446.

[75] Avissar R,Pielke R A. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meterology[J]. Monthly Weaearth Review,1989,117:2 113-2 136.

[76] Weng Ensheng,Zhou Guangsheng. Defining plant functional types in China for global change studies[J]. Acta Phytoecologica Sinica,2005,291:81-97.[翁恩生,周广胜.用于全球变化的中国植物功能型划分[J].植物生态学报,2005,291:81-97.]

[77] Ni Jian. Plant functional types and biomes of China at a regional scale[J]. Acta Botanica Sinica,2001,434:419-425.[倪健.区域尺度的中国植物功能型与生物群区[J].植物学报,2001,434:419-425.]

[78] Bonan G B. A Land Surface ModelLSM version 1.0 for Ecological,Hydrological,and Atmospheric Studies:Technical Description and User's Guide[R]. NCAR Tech Note NCAR/TN417+STR.1996.

[79] Adams J B,Smith M O,Johnson P E.Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site[J]. Journal of Geophysical Research,1986,91:8 098-8 112.

[80] Xu Xiru,Zhou Lianfang,Zhu Xiaohong. Factor analysis of mixed Pixels and its application in winter wheat area estimation[J]. Chinese Science Bulletin,1989,3412:946-949.[徐希孺,周莲芳,朱晓红.混合象元的因子分析方法及其在大范围冬小麦播种面积计算中的应用探讨[J].科学通报,1989,3412:946-949.]

[81] Smith M O,Ustin S L,Adams J B,et al. Vegetation in deserts. I. A regional measure of abundances from multispectral images[J]. Remote Sensing of Environment,1990,311:1-26.

[82] Roberts D A,Gardner M,Church R,et al. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture models[J]. Remote Sensing Environmental,1998,65:267-279.

[83] Braswell B H,Hagen S C,Frolking S E,et al. A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS:Application in the Brazilian Amazon region[J]. Remote Sensing of Environment,2003,87:243-256.

[84] Zhang Liangpei,Li Deren,Tong Qingxi,et al. Study of the spectra mixing model of soil and canopy in poyang lake area[J]. Acta Geodaetica et Cartographic Sinica,1997,261:72-76.[张良培,李德仁,童庆禧,.鄱阳湖地区土壤植被光谱混合模型的研究[J].测绘学报,1997,261:72-76.]

[85] Liu Zhengkai,Cen Shuwei. Spectral mixture analysis of imaging spectrometer data[J]. Journal of Remote Sensing,1996,111:32-37.[刘政凯,岑曙炜.成象光谱遥感图象的有限光谱混合分析[J].环境遥感,1996,111:32-37.]

[86] Luo Hongxia,Gong Jianya. Effects of linear and nonlinear spectra mixing models on simulating mixing spectra of soil and canopy[J]. Bulletin of Surveying and Mapping,2005,5:6-10.[罗红霞,龚健雅.线性和非线性光谱混合模型模拟土壤、植被混合光谱的效果分析[J].测绘通报,2005,5:6-10.]

[87] Foody G M,Cox D P. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions[J]. International Journal of Remote Sensing,1994,15:619-631.

[88] Li Yuzhu,Zeng Yan. Study on methods of rice planting area estimation at regional scale using NOAA/AVHRR data[J]. Journal of Remote Sensing,1998,2 2:125-130.[李郁竹,曾燕.应用NOAA/AVHRR 数据测算局地水稻种植面积[J].遥感学报,1998,22:125-130.]

[89] Huo Dongmin,Liu Luo.Possibilistic c-Means algorithm improving the pixel unmixing of remotely sensed image[J]. Journal of Remote Sensing,2005,2:131-137.[霍东民,刘骆.基于PCM改进算法的遥感混合像元模拟分析[J]. 遥感学报,2005,2:131-137.]

[90] Atkinson P M,Cutler M E J,Lewis H.Mapping sub-pixel proportional land cover with AVHRR imagery[J]. International Journal of Remote Sensing,1997,18:917-935.

[91] Foody G M. Relating the land-cover composition of mixed pixels to artificial neural network classification[J]. Photogrammetric Engineering & Remote Sensing,1996,62:491-499.

[92] Wang Xipeng,Zhang Yangzhen. The study on decomposing AVHRR mixed pixels by means of neural network model[J]. Journal of Remote Sensing,1998,21:51-56.[王喜鹏,张养贞.应用神经网络模型分解AVHRR混合像元[J].遥感学报,1998,21:51-56.]

[93] Gui Yufeng,Zhang Jixian,Lin Zongjian,et al. Research on method of decomposing remote sensing mixed pixel based on grey neutral network theory[J]. Rencots Sensing Information,2000,4:27-28,40.[桂预风,张继贤,林宗坚,.基于灰神经网络理论的混合像元分解方法研究[J].遥感信息,2000,4:27-28,40.]

[94] Mao Kebiao,Tan Zhihao,Zhang Wanchang. A method of classification of remote sensing based on SOFM model[J]. Remote Sensing Technology and Application,2003,186: 399-403.[毛克彪,覃志豪,张万昌.一个基于SOFM网络模型的遥感图像分类方法[J].遥感技术与应用,2003,186:399-403.]

[95] Xu Honggen,Ma Hongchao,Li Deren.Research on the classification based on SOM and LSMA for hyperspectral Image[J]. Journal of Remote Sensing,2007,6:778-786.[徐宏根,马洪超,李德仁. 结合SOM神经网络和混合像元分解的高光谱影像分类方法研究[J].遥感学报,2007,6:778-786.]

[96] Wu Ke,Zhang Liangpei,Li Pingxiang. A neural network method of selective endmember for Pixel Unmixing[J]. Journal of Remote Sensing,2007,1:20-26.[吴柯,张良培,李平湘. 一种端元变化的神经网络混合像元分解方法[J].遥感学报,2007,1:20-26.]

[97] Fan Wenjie,Xu Xiru.Pixel unmixing based on blind signals seperation[J]. Progress in Natural Science,2005,15 8:993-999.[范闻捷,徐希孺.混合像元组分信息的盲分解方法[J].自然科学进展,2005,158:993-999.]

[98] Tao Xin,Fan Wenjie,Xu Xiru. Blind Separation of component information from hyperspectral data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis on Line First,2008,1:73-78.[陶欣,范闻捷,徐希孺.高光谱数据组分信息的盲分解方法[J].北京大学学报(自然科学版)网络版(预印本),2008,1:73-78.]

[99] Yang Guijun,Zhang Jixian.Research on method of decomposing remote sensing mixed pixel based on grey correlation theory[J]. Bulletin of Surveying and Mapping,2004,10:1-3.[杨贵军,张继贤.利用灰色相关分解混合像元方法研究[J].测绘通报,2004,10:1-3.]

[100] Ling Feng,Zhang Qiuwen,Wang Cheng,et al. Sub-pixel mapping of remote sensing images based on cellular automata model[J]. Journal of Image and Graphics,2005,107:916-921.[凌峰,张秋文,王乘,.基于元胞自动机模型的遥感图像亚像元定位[J].中国图象图形学报,2005,107:916-921.]

[101] Heiskanen J. Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data[J]. Remote Sensing of Environment,2006,1031:97-114.

[102] Braswell B H,Hagen S C,Frolking S E,et al. A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon region[J]. Remote Sensing of Environment,2003,87:243-256.

[103] Heiskanen J,Kivinen S. Assessment of multispectral, temporal and angular MODIS data for tree cover mapping in the tundra-taiga transition zone[J]. Remote Sensing of Environment,2008,1125:2 367-2 380.

[104] Defries R,Townshend J R G,Hansen M.Continuous fields of vegetation characteristics at the global scale[J]. Journal of Geophysical Research,1999,104:16 911-16 923.

[105] DeFries R,Belward A S. Characterizing global and regional land cover from satellite data:An introduction to the special issue[J]. International Journal of Remote Sensing,2000,21:1 083-1 092.

[106] Hansen M C,DeFries R S,Townshend J R G,et al. Towards an operational MODIS continuous field of percent tree cover algorithm:Examples using AVHRR and MODIS data[J]. Remote Sensing Environment,2002,83:303319.

[107] White M A,Shaw J D,Ramsey R D. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the south-western USA[J]. International Journal of Remote Sensing,2005,2612: 2 699-2 704.

[108] Ronggao Liu,Shunkin Liang,Jiyuan Liu,et al. Continuous tree distribution in China: A comparison of two estimates from Moderate-Resolution Imaging Spectroradiometer and Landsat data[J]. Journal of Geophysical Research-Atmospheres,2006,111,D08101,doi:10.1029/2005JD006039.

[109] Bonan G B,Levis S,Kergoat L,et al. Landscapes as patches of plant functional types:An integrating concept for climate and ecosystem models[J]. Global Biogeochemical,Cycles,2002,162,1021,doi:10.1029/2000GB001360.

[110] Tian Y,Dickinson R E,Zhou L,et al. Impact of new land boundary conditions from Moderate Resolution Imaging SpectroradiometerMODIS data on the climatology of land surface variables[J]. Journal of Geophysical Research,2004,109,D20115,doi:10.1029/2003JD004499.

[111] Van Leeuwen W J D,Huete A R,Walthall C L,et al. Deconvolution of remotely sensed spectral mixtures for retrieval of LAI, fAPAR and soil brightness[J]. Journal of HydrologyAmsterdam,1997,188-1891/4: 697-724.

[112] Garcia-Haro F J,Camacho-de Coca F,Melia J. A directional spectral mixture analysis method: Application to multiangular airborne measurements[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,442: 365-377.

[113] Asner G P,Wessman C A,Privette J L. Unmixing the directional reflectances of AVHRR sub-pixel landcovers[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,354:868-878.

[114] Peddle D R,Hall F G,LeDrew E F. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure[J]. Remote Sensing of Environment,1999,673:288-297.

[115] Chopping M J,Su L,Laliberte A,et al. Mapping woody plant cover in desert grasslands using canopy reflectance modeling and MISR data[J]. Geophysical Research Letters,2006,3317,L17402,doi:10.1029/2006G2027148.

[116] Tang Shihao,Zhu Qijiang,Li Xiaowen,et al. The study of subpixel unmixing using hyperspectral and multiangular data[J]. Journal of Remote Sensing,2003,73:182-189.[唐世浩,朱启疆,李小文,. 高光谱与多角度数据联合进行混合像元分解研究[J].遥感学报,2003,73:182-189.]

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[3] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[4] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[5] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[6] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[7] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[8] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[9] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[10] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[13] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[14] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[15] 黄亦鹏,李万彪,赵玉春,白兰强. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1273-1287.
阅读次数
全文


摘要